当前位置: X-MOL 学术IEEE Netw. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimizing Computation Offloading in Satellite-UAV-Served 6G IoT: A Deep Learning Approach
IEEE NETWORK ( IF 9.3 ) Pub Date : 2021-08-20 , DOI: 10.1109/mnet.011.2100097
Bomin Mao , Fengxiao Tang , Yuichi Kawamoto , Nei Kato

Satellite networks can provide Internet of Things (IoT) devices in remote areas with seamless coverage and downlink multicast transmissions. However, the large transmission latency, serious path loss, as well as the energy and resource constraints of IoT terminals challenge the stringent service requirements for throughput and latency in the 6G era. To address these problems, technologies including space-air-ground integrated networks (SAGINs), machine learning, edge computing, and energy harvesting are highly expected in 6G IoT. In this article, we consider the unmanned aerial vehicles (UAVs) and satellites to offer wireless-powered IoT devices edge computing and cloud computing services, respectively. To accelerate the communications, Terahertz frequency bands are utilized for communications between UAVs and IoT devices. Since the tasks generated by terrestrial IoT devices can be conducted locally, offloaded to the UAV-based edge servers or remote cloud servers through satellites, we focus on the computation offloading problem and consider deep learning techniques to optimize the task success rate considering the energy dynamics and channel conditions. A deep-learning-based offloading policy optimization strategy is given where the long short-term memory model is considered to address the dynamics of energy harvesting performance. Through the theoretical explanation and performance analysis, we discover the importance of emerging technologies including SAGIN, energy harvesting, and artificial intelligence techniques for 6G IoT.

中文翻译:

优化卫星无人机服务的 6G 物联网中的计算卸载:一种深度学习方法

卫星网络可以为偏远地区的物联网 (IoT) 设备提供无缝覆盖和下行多播传输。然而,物联网终端传输时延大、路径损耗严重,以及物联网终端的能源和资源限制,挑战了6G时代对吞吐量和时延的严格服务要求。为了解决这些问题,6G 物联网对包括天地一体化网络(SAGIN)、机器学习、边缘计算和能量收集在内的技术寄予厚望。在本文中,我们考虑无人机 (UAV) 和卫星分别为无线供电的物联网设备提供边缘计算和云计算服务。为了加速通信,太赫兹频段被用于无人机和物联网设备之间的通信。由于地面物联网设备生成的任务可以在本地执行,通过卫星卸载到基于无人机的边缘服务器或远程云服务器,我们专注于计算卸载问题,并考虑深度学习技术来优化任务成功率,同时考虑能量动态和渠道条件。给出了一种基于深度学习的卸载策略优化策略,其中考虑了长期短期记忆模型来解决能量收集性能的动态问题。通过理论解释和性能分析,我们发现了包括 SAGIN、能量收集和人工智能技术在内的新兴技术对 6G 物联网的重要性。我们专注于计算卸载问题,并考虑深度学习技术来优化任务成功率,同时考虑能量动态和信道条件。给出了一种基于深度学习的卸载策略优化策略,其中考虑了长期短期记忆模型来解决能量收集性能的动态问题。通过理论解释和性能分析,我们发现了包括 SAGIN、能量收集和人工智能技术在内的新兴技术对 6G 物联网的重要性。我们专注于计算卸载问题,并考虑深度学习技术来优化任务成功率,同时考虑能量动态和信道条件。给出了一种基于深度学习的卸载策略优化策略,其中考虑了长期短期记忆模型来解决能量收集性能的动态问题。通过理论解释和性能分析,我们发现了包括 SAGIN、能量收集和人工智能技术在内的新兴技术对 6G 物联网的重要性。给出了一种基于深度学习的卸载策略优化策略,其中考虑了长期短期记忆模型来解决能量收集性能的动态问题。通过理论解释和性能分析,我们发现了包括 SAGIN、能量收集和人工智能技术在内的新兴技术对 6G 物联网的重要性。给出了一种基于深度学习的卸载策略优化策略,其中考虑了长期短期记忆模型来解决能量收集性能的动态问题。通过理论解释和性能分析,我们发现了包括 SAGIN、能量收集和人工智能技术在内的新兴技术对 6G 物联网的重要性。
更新日期:2021-08-24
down
wechat
bug