当前位置: X-MOL 学术J. Intell. Mater. Syst. Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Use of shape memory alloy for active shock control bump application
Journal of Intelligent Material Systems and Structures ( IF 2.7 ) Pub Date : 2021-08-23 , DOI: 10.1177/1045389x211038674
Jinhao Qiu 1 , Lin Hao 1 , Hongli Ji 1 , Chen Zhang 1 , Rui Nie 1
Affiliation  

A shape memory alloy (SMA) with composition of Ni50.1Ti49.9 (at. %) was used for fabrication of a 3-D bump structure intended for use as an active shock control bump (SCB) into a transonic wing. This kind of bump is a variable-geometry structure designed to reduce the drag induced by shock wave ensure wing’s aerodynamic performance over the entire range of operating conditions. To meet this target, the SMA bump requires to exhibit two-way shape memory effect (TWSME) so that it can yield continuous shape change by properly changing the driving temperature. Result from differential scanning calorimetry was first presented to provide material’s phase transformation temperatures. To obtain the TWSME, a thermo-mechanical training procedure was proposed and a set of training devices were designed for training SMA bump. The SMA bump in this paper is trained to have a relatively flat shape in high temperature and can swell up when cooling. After more than 80 times training, the TWSME of the material tends to be stable. Then the thermo-mechanical responses of the SMA bump which is subjected to about 100 times training was tested. The result shows that the trained SMA bump can generate about 1.2 mm maximum recoverable deformation during martensitic transformation, which is about 3% of the ratio of the deformation region. Finally, the influence of external load on the thermo-mechanical response of the trained SMA bump were also studied.



中文翻译:

将形状记忆合金用于主动减震控制碰撞应用

组成为 Ni50.1Ti49.9 (at. %) 的形状记忆合金 (SMA) 用于制造 3-D 凸起结构,该结构旨在用作跨音速机翼中的主动冲击控制凸起 (SCB)。这种凸起是一种可变几何结构,旨在减少冲击波引起的阻力,确保机翼在整个工作条件范围内的空气动力学性能。为了达到这个目标,SMA凸块需要表现出双向形状记忆效应(TWSME),以便通过适当改变驱动温度来产生连续的形状变化。差示扫描量热法的结果首先用于提供材料的相变温度。为了获得 TWSME,提出了一种热机械训练程序,并设计了一套训练设备来训练 SMA 凸点。本文中的 SMA 凸块经过训练,在高温下具有相对平坦的形状,并且在冷却时会膨胀。经过80多次训练,材料的TWSME趋于稳定。然后测试了经过大约 100 次训练的 SMA 凸块的热机械响应。结果表明,经过训练的 SMA 凸块在马氏体相变过程中可产生约 1.2 mm 的最大可恢复变形,约为变形区域比例的 3%。最后,还研究了外部载荷对训练后的 SMA 凸块的热机械响应的影响。然后测试了经过大约 100 次训练的 SMA 凸块的热机械响应。结果表明,经过训练的 SMA 凸块在马氏体相变过程中可产生约 1.2 mm 的最大可恢复变形,约为变形区域比例的 3%。最后,还研究了外部载荷对训练后的 SMA 凸块的热机械响应的影响。然后测试了经过大约 100 次训练的 SMA 凸块的热机械响应。结果表明,经过训练的 SMA 凸块在马氏体相变过程中可产生约 1.2 mm 的最大可恢复变形,约为变形区域比例的 3%。最后,还研究了外部载荷对训练后的 SMA 凸块的热机械响应的影响。

更新日期:2021-08-24
down
wechat
bug