当前位置: X-MOL 学术Shock Waves › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study on the effect of the initiation process of cylindrical high explosives on the blast-wave behavior
Shock Waves ( IF 2.2 ) Pub Date : 2021-08-23 , DOI: 10.1007/s00193-021-01021-x
Y. Sugiyama 1 , T. Matsumura 1 , K. Wakabayashi 1 , T. Homae 2
Affiliation  

We conducted a series of numerical simulations to understand the effect of the initiation process of cylindrical high explosives on the blast-wave behavior and peak overpressure distribution. The first case involved the explosion of a cylindrical high explosive whose length-to-diameter ratio was equal to 2 and that was vertically placed above the ground surface. The initiation point was at the top of the high explosive. The initiation process induced the detonation momentum directed from top to bottom, and the detonation products forcefully hit the ground surface, resulting in a higher peak overpressure on the ground surface in comparison with the case using an isothermal constant-pressure volume. After the blast wave expanded far from the initiation point, the computed peak overpressures of the two approaches showed good agreement with those from experiments. The second case involved the explosion of a cylindrical high explosive whose length-to-diameter ratio was unity and that was placed in air. The initiation point was the one end side of the high explosive. The blast wave was divided into three regions that originated from the detonation in the high explosive, an oblique shock wave in air, and a bridge wave connected with them, thus causing an azimuthal distribution of peak overpressure. The highest peak overpressure values were computed in the bridge wave region. To understand the propagation behavior of the blast wave, we should thoroughly observe how and when all the waves affecting the blast-wave behavior are generated and how they propagate and interact with each other.



中文翻译:

圆柱型烈性炸药起爆过程对冲击波行为影响的数值研究

我们进行了一系列数值模拟,以了解圆柱形高爆炸药的起爆过程对冲击波行为和峰值超压分布的影响。第一个案例是一个长径比为2、垂直放置在地表上方的圆柱形强力炸药爆炸。起爆点在高爆炸药的顶部。起爆过程产生自上而下的爆轰动量,爆轰产物强力撞击地表,导致地表的峰值超压高于等温恒压体积。冲击波在远离起始点的地方展开后,两种方法计算出的峰值超压与实验结果非常吻合。第二个案例是一个长径比为1的圆柱形炸药,放置在空气中爆炸。起爆点是炸药的一端。冲击波分为三个区域,分别是由高爆炸药的爆炸、空气中的斜激波和与之相连的桥波三个区域,从而引起峰值超压的方位角分布。在桥波区域计算了最高峰值超压值。要了解冲击波的传播行为,我们应该彻底观察所有影响冲击波行为的波是如何以及何时产生的,以及它们是如何传播和相互作用的。第二个案例是一个长径比为1的圆柱形炸药,放置在空气中爆炸。起爆点是炸药的一端。冲击波分为三个区域,分别是由高爆炸药的爆炸、空气中的斜激波和与之相连的桥波三个区域,从而引起峰值超压的方位角分布。在桥波区域计算了最高峰值超压值。要了解冲击波的传播行为,我们应该彻底观察所有影响冲击波行为的波是如何以及何时产生的,以及它们是如何传播和相互作用的。第二个案例是一个长径比为1的圆柱形炸药,放置在空气中爆炸。起爆点是炸药的一端。冲击波分为三个区域,分别是由高爆炸药的爆炸、空气中的斜激波和与之相连的桥波三个区域,从而引起峰值超压的方位角分布。在桥波区域计算了最高峰值超压值。要了解冲击波的传播行为,我们应该彻底观察所有影响冲击波行为的波是如何以及何时产生的,以及它们是如何传播和相互作用的。

更新日期:2021-08-24
down
wechat
bug