当前位置: X-MOL 学术Rock Mech. Rock Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermomechanics for Geological, Civil Engineering and Geodynamic Applications: Rate-Dependent Critical State Line Models
Rock Mechanics and Rock Engineering ( IF 6.2 ) Pub Date : 2021-08-23 , DOI: 10.1007/s00603-021-02397-z
Antoine B. Jacquey 1, 2 , Klaus Regenauer-Lieb 3
Affiliation  

Equilibrium thermodynamics has been of fundamental importance to many branches of engineering including cyclical mechanical applications. However, in geomechanics and geological applications it has not yet reached a consensus in the community. Reason for the failure of establishing thermodynamic laws as a ground principle is the far from equilibrium nature of geomechanical problems which prevent the local equilibrium assumption. Problems including rate-dependence and poromechanical complexity, where deformation often occurs in a highly localized manner, were therefore thought to be not amenable to a thermodynamic approach. Here we show that the theory of thermomechanics, originally proposed for quasi-static hyperplastic deformation problems can be extended to include rate-dependent critical state-line models for porous rocks. The development therefore makes thermodynamic-consistent modeling available for civil engineering, geological and even geodynamic problems. In this two-part contribution, we present extensions of the thermomechanics theory to account for the poromechanics of path- and rate-dependent critical state line models and we cover the relevance of this thermodynamic-consistent model for civil engineering, geological and geodynamic applications. In this first part, we review the concepts behind the thermomechanics theory and present a thermodynamic extension of generic critical state line models for visco-plasticity and damage mechanics and analyze the model prediction for strain localization.



中文翻译:

地质、土木工程和地球动力学应用的热力学:与速率相关的临界状态线模型

平衡热力学对包括循环机械应用在内的许多工程分支具有根本重要性。然而,在地质力学和地质应用方面,尚未在社会上达成共识。未能建立热力学定律作为基本原理的原因是地质力学问题的远非平衡性质阻止了局部平衡假设。因此,包括速率依赖性和多孔机械复杂性在内的问题,通常以高度局部化的方式发生变形,因此被认为不适用于热力学方法。在这里,我们展示了最初为准静态超塑性变形问题提出的热力学理论可以扩展到包括多孔岩石的速率相关临界状态线模型。因此,该开发使热力学一致建模可用于土木工程、地质甚至地球动力学问题。在这两个部分的贡献中,我们提出了热力学理论的扩展,以解释路径和速率相关的临界状态线模型的孔隙力学,我们涵盖了这种热力学一致模型对土木工程、地质和地球动力学应用的相关性。在第一部分中,我们回顾了热力学理论背后的概念,并提出了粘塑性和损伤力学的通用临界状态线模型的热力学扩展,并分析了应变局部化的模型预测。我们提出了热力学理论的扩展,以解释与路径和速率相关的临界状态线模型的孔隙力学,我们涵盖了这种热力学一致模型与土木工程、地质和地球动力学应用的相关性。在第一部分中,我们回顾了热力学理论背后的概念,并提出了粘塑性和损伤力学的通用临界状态线模型的热力学扩展,并分析了应变局部化的模型预测。我们提出了热力学理论的扩展,以解释与路径和速率相关的临界状态线模型的孔隙力学,我们涵盖了这种热力学一致模型与土木工程、地质和地球动力学应用的相关性。在第一部分中,我们回顾了热力学理论背后的概念,并提出了粘塑性和损伤力学的通用临界状态线模型的热力学扩展,并分析了应变局部化的模型预测。

更新日期:2021-08-24
down
wechat
bug