当前位置: X-MOL 学术Polym. Degrad. Stabil. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A structure dynamic interaction multiscale method for degradation modeling of bioresorbable polyesters
Polymer Degradation and Stability ( IF 5.9 ) Pub Date : 2021-08-22 , DOI: 10.1016/j.polymdegradstab.2021.109704
Taohong Zhang 1, 2 , Han Chen 1, 2 , Xuxu Guo 1, 2 , Yixuan Yu 1 , Aziguli Wulamu 1, 2
Affiliation  

Biomedical degradable polyester materials are widely used in medical field because of their excellent mechanical properties and degradation properties. Analysis of the degradation process and strength change of biomedical degradable materials is essential for clinical use. The evolution of structure from micro to mesoscale is critical for chain broken, recrystallization and macro strength performance during polymer degradation. A structure pattern dynamic interaction method coupled with multi-scale model is proposed in this paper to simulate the degradation process. In the process of status evolution, Blocked Cavity structure pattern (BC pattern) and Blocked Amorphous pattern (BA pattern) are denoted as the interaction of different phases due to their influence on chain scission and oligomer diffusion. In strength structure, Crystalline Island pattern, Amorphous Island pattern and Vacancy Marsh pattern are defined as the interaction to model the strength support. An algorithm named Boundary Encirclement Algorithm (BEA) is designed for the interaction pattern recognition. With the evolution of different phase patterns and the interaction of different phases, chain broken, recrystallization and oligomer diffusion are reconsidered in local area. And strength model is constructed which is based on the interaction of strength patterns. The coupled multiscale model is denoted as Structure Dynamic Interaction-Multiscale Degradation Model (SDI-MSDM). Calculated examples are compared with the experimental data. The simulation value and the experimental value are well fitted, which indicates that the patterns recognition affect the model calculation.



中文翻译:

一种用于生物可吸收聚酯降解建模的结构动态相互作用多尺度方法

生物医用可降解聚酯材料因其优异的力学性能和降解性能而被广泛应用于医疗领域。分析生物医学可降解材料的降解过程和强度变化对临床使用至关重要。结构从微观到中尺度的演变对于聚合物降解过程中的断链、再结晶和宏观强度性能至关重要。本文提出了一种结合多尺度模型的结构模式动力相互作用方法来模拟退化过程。在状态演变过程中,Blocked Cavity结构模式(BC模式)和Blocked Amorphous模式(BA模式)由于它们对断链和低聚物扩散的影响而被表示为不同相的相互作用。在强度结构上,结晶岛模式、非晶岛模式和空置沼泽模式被定义为相互作用以模拟强度支撑。一种称为边界包围算法(BEA)的算法被设计用于交互模式识别。随着不同相模式的演变和不同相的相互作用,在局部区域重新考虑断链、再结晶和低聚物扩散。并基于强度模式的相互作用构建强度模型。耦合的多尺度模型表示为结构动态相互作用-多尺度退化模型(SDI-MSDM)。计算实例与实验数据进行了比较。仿真值与实验值拟合良好,说明模式识别对模型计算有影响。无定形岛模式和空置沼泽模式被定义为对强度支撑进行建模的交互作用。一种称为边界包围算法(BEA)的算法被设计用于交互模式识别。随着不同相模式的演变和不同相的相互作用,在局部区域重新考虑断链、再结晶和低聚物扩散。并基于强度模式的相互作用构建强度模型。耦合的多尺度模型表示为结构动态相互作用-多尺度退化模型(SDI-MSDM)。计算实例与实验数据进行了比较。仿真值与实验值拟合良好,说明模式识别对模型计算有影响。Amorphous Island 模式和 Vacancy Marsh 模式被定义为相互作用来模拟强度支撑。一种称为边界包围算法(BEA)的算法被设计用于交互模式识别。随着不同相模式的演变和不同相的相互作用,在局部区域重新考虑断链、再结晶和低聚物扩散。并基于强度模式的相互作用构建强度模型。耦合的多尺度模型表示为结构动态相互作用-多尺度退化模型(SDI-MSDM)。计算实例与实验数据进行了比较。仿真值与实验值拟合良好,说明模式识别对模型计算有影响。

更新日期:2021-09-10
down
wechat
bug