当前位置: X-MOL 学术Inter. J. Metalcast. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
FEM Simulations for the Optimization of the Inlet Gate System in Rapid Investment Casting Process for the Realization of Heat Exchangers
International Journal of Metalcasting ( IF 2.6 ) Pub Date : 2021-08-21 , DOI: 10.1007/s40962-021-00668-7
D. Almonti 1 , G. Baiocco 1 , N. Ucciardello 1 , E. Mingione 2
Affiliation  

Over the last decades, additive manufacturing (AM) has become the principal production technology for prototypes and components with high added value. In the production of metallic parts, AM allows producing complex geometry with a single process. Also, AM admits a joining of elements that could not be realized with traditional methods. In addition, AM allows the manufacturing of components that could not be realized using other types of processes like reticular structures in heat exchangers. A solid mold investment casting that uses printed patterns overcomes typical limitations of additive processes such as expensive machinery and challenging process parameter settings. Indeed, rapid investment casting provides for a foundry epoxy pattern reproducing the component to exploit in the lost wax casting process. In this paper, aluminium radiators with flat heat pipes seamlessly connected with a cellular structure were conceived and produced. This paper aims at defining and investigating the principal foundry parameters to achieve a defect-free heat exchanger. For this purpose, different device CAD models were designed, considering four pipes’ thickness and length. Finite element method numerical simulations were performed to optimize the design of the casting process. Three different gate configurations were investigated for each length. The numerical investigations led to the definition of a castability range depending on flat heat pipes geometry and casting parameters. The optimal gate configuration was applied in the realization of AM patterns and casting processes



中文翻译:

用于实现热交换器的快速熔模铸造过程中入口浇口系统优化的 FEM 模拟

在过去的几十年中,增材制造 (AM) 已成为具有高附加值的原型和组件的主要生产技术。在金属零件的生产中,增材制造允许通过单一工艺生产复杂的几何形状。此外,AM 承认加入了传统方法无法实现的元素。此外,增材制造允许制造使用其他类型工艺(如热交换器中的网状结构)无法实现的部件。使用印刷图案的实心熔模铸造克服了增材工艺的典型限制,例如昂贵的机械和具有挑战性的工艺参数设置。事实上,快速熔模铸造提供了一种铸造环氧树脂模型,可复制在失蜡铸造过程中使用的组件。在这篇论文中,设计并生产了具有与蜂窝结构无缝连接的扁平热管的铝制散热器。本文旨在定义和研究实现无缺陷换热器的主要铸造参数。为此,考虑到四个管道的厚度和长度,设计了不同的设备 CAD 模型。进行了有限元法数值模拟以优化铸造工艺的设计。针对每个长度研究了三种不同的栅极配置。数值研究导致可铸性范围的定义取决于扁平热管几何形状和铸造参数。最佳浇口配置应用于增材制造图案和铸造工艺的实现 本文旨在定义和研究实现无缺陷换热器的主要铸造参数。为此,考虑到四个管道的厚度和长度,设计了不同的设备 CAD 模型。进行了有限元法数值模拟以优化铸造工艺的设计。针对每个长度研究了三种不同的栅极配置。数值研究导致可铸性范围的定义取决于扁平热管几何形状和铸造参数。最佳浇口配置应用于增材制造图案和铸造工艺的实现 本文旨在定义和研究实现无缺陷换热器的主要铸造参数。为此,考虑到四个管道的厚度和长度,设计了不同的设备 CAD 模型。进行了有限元法数值模拟以优化铸造工艺的设计。针对每个长度研究了三种不同的栅极配置。数值研究导致可铸性范围的定义取决于扁平热管几何形状和铸造参数。最佳浇口配置应用于增材制造图案和铸造工艺的实现 进行了有限元法数值模拟以优化铸造工艺的设计。针对每个长度研究了三种不同的栅极配置。数值研究导致可铸性范围的定义取决于扁平热管几何形状和铸造参数。最佳浇口配置应用于增材制造图案和铸造工艺的实现 进行了有限元法数值模拟以优化铸造工艺的设计。针对每个长度研究了三种不同的栅极配置。数值研究导致可铸性范围的定义取决于扁平热管几何形状和铸造参数。最佳浇口配置应用于增材制造图案和铸造工艺的实现

更新日期:2021-08-23
down
wechat
bug