当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator
Nano Energy ( IF 17.6 ) Pub Date : 2021-08-21 , DOI: 10.1016/j.nanoen.2021.106451
Jian Zhou 1 , Ye Tao 1, 2 , Weiyu Liu 3 , Haizhen Sun 4 , Wenlong Wu 4 , Chunlei Song 1 , Rui Xue 1 , Tianyi Jiang 4 , Hongyuan Jiang 4 , Yukun Ren 1
Affiliation  

The AC electrokinetic technology, such as AC electroosmosis, induced-charged electroosmosis, dielectrophoresis, etc., can precisely manipulate trace fluids and has been widely used in lab on a chip. However, the power supplies used in AC electrokinetic experiments are mostly function generators or other large-scare instruments, which is an obstacle to portability. Encouragingly, triboelectric nanogenerator (TENG) with the characteristics of portable, green, and simple structure is a potential opportunity for AC electrokinetic microfluidic operation. We have designed a self-powered AC electrokinetic microfluidic system based on vertical contact-separation mode TENG for the first time. The TENG, as a power supply, costs only 2 cents and maintains excellent output performance after millions of working cycles. Through the combination of TENG and microfluidic chip, this system successfully realizes AC electroosmotic flow and induced-charged electroosmotic flow in the microchannel and completes the effective mixing of two fluids at low frequencies (<10 Hz). Furthermore, we have achieved precise control of particle behavior, including focusing, deflection, and separation under manual operation. Therefore, the self-powered AC electrokinetic microfluidic system designed in this work not only expands the application fields of TENG but also provides a new power solution for AC electrokinetic microfluidic operation. This system is expected to get rid of the need for large-scale power supply in traditional methods and has broad application prospects in the fields of portable detection, micro-reaction, and micro-bioanalysis.



中文翻译:

基于摩擦纳米发电机的自供电交流电动微流控系统

交流电渗、感应带电电渗、介电泳等交流电动技术可以精确地操纵微量流体,在芯片实验室中得到了广泛的应用。但交流动电实验使用的电源多为函数发生器或其他大型仪器,不利于携带。令人鼓舞的是,具有便携、绿色、结构简单等特点的摩擦纳米发电机(TENG)是交流电动微流体操作的潜在机会。我们首次设计了一种基于垂直接触分离模式 TENG 的自供电交流电动微流体系统。TENG作为电源,成本仅为2美分,经过数百万次工作循环后仍能保持出色的输出性能。该系统通过TENG和微流控芯片的结合,成功实现了微通道中的交流电渗流和感应带电电渗流,完成了低频(<10Hz)两种流体的有效混合。此外,我们还实现了对粒子行为的精确控制,包括手动操作下的聚焦、偏转和分离。因此,本工作设计的自供电交流电动微流控系统不仅扩展了TENG的应用领域,而且为交流电动微流控操作提供了新的动力解决方案。该系统有望摆脱传统方法对大规模供电的需求,在便携式检测、微反应、微生物分析等领域具有广阔的应用前景。该系统成功实现了微通道中的交流电渗流和感应带电电渗流,完成了低频(<10Hz)两种流体的有效混合。此外,我们还实现了对粒子行为的精确控制,包括手动操作下的聚焦、偏转和分离。因此,本工作设计的自供电交流电动微流控系统不仅扩展了TENG的应用领域,而且为交流电动微流控操作提供了新的动力解决方案。该系统有望摆脱传统方法对大规模供电的需求,在便携式检测、微反应、微生物分析等领域具有广阔的应用前景。该系统成功实现了微通道中的交流电渗流和感应带电电渗流,完成了低频(<10Hz)两种流体的有效混合。此外,我们还实现了对粒子行为的精确控制,包括手动操作下的聚焦、偏转和分离。因此,本工作设计的自供电交流电动微流控系统不仅扩展了TENG的应用领域,而且为交流电动微流控操作提供了新的动力解决方案。该系统有望摆脱传统方法对大规模供电的需求,在便携式检测、微反应、微生物分析等领域具有广阔的应用前景。

更新日期:2021-08-29
down
wechat
bug