当前位置: X-MOL 学术Nanotechnology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of misfit strain on the buckling of graphene/MoS2 van der Waals heterostructures
Nanotechnology ( IF 3.5 ) Pub Date : 2021-09-07 , DOI: 10.1088/1361-6528/ac1f55
Run-Sen Zhang 1 , Jin-Wu Jiang 1
Affiliation  

Van der Waals heterostructures inherit many novel electronic and optical properties from their constituent atomic layers. Mechanical stability is key for realizing high-performance nanodevices based on van der Waals heterostructures. However, buckling instability is a critical mechanical issue for heterostructures associated with its two-dimensional nature. Using molecular dynamics simulations of graphene/MoS2 heterostructures, we demonstrate the relationship between buckling instability and the misfit strain that arises inevitably in such heterostructures. The impact of misfit strain on buckling depends on its magnitude: (1) A negative misfit strain causes a pre-compression of the graphene layer, which in turn initiates and accelerates buckling in this layer and reduces the buckling stability in the heterostructure as a whole. (2) A small positive misfit strain enhances the buckling stability of the graphene/MoS2 heterostructure by pre-stretching and hence decelerating the buckling of the graphene layer (where heterostructure buckling is initiated). (3) In the case of a large positive misfit strain, the graphene layer is pre-stretched while the MoS2 layer is significantly pre-compressed, so that heterostructure buckling is initiated by the MoS2 layer. Consequently, the buckling stability of the graphene/MoS2 heterostructure is reduced by increasing the large positive misfit strain. These findings are valuable for understanding the mechanical properties of van der Waals heterostructures.



中文翻译:

失配应变对石墨烯/二硫化钼范德华异质结构屈曲的影响

范德华异质结构从其组成原子层继承了许多新颖的电子和光学特性。机械稳定性是实现基于范德华异质结构的高性能纳米器件的关键。然而,屈曲不稳定性是与其二维性质相关的异质结构的关键机械问题。使用石墨烯/MoS 2 的分子动力学模拟异质结构,我们证明了屈曲不稳定性与这种异质结构中不可避免地出现的失配应变之间的关系。失配应变对屈曲的影响取决于其大小: (1) 负失配应变导致石墨烯层的预压缩,进而引发并加速该层的屈曲,并降低异质结构整体的屈曲稳定性. (2) 小的正错配应变通过预拉伸增强了石墨烯/MoS 2异质结构的屈曲稳定性,从而减缓了石墨烯层的屈曲(异质结构屈曲开始的地方)。(3) 在大的正错配应变的情况下,石墨烯层被预拉伸,而 MoS 2层被显着预压缩,因此异质结构屈曲是由 MoS 2层引发的。因此,石墨烯/MoS 2异质结构的屈曲稳定性通过增加大的正错配应变而降低。这些发现对于理解范德华异质结构的机械性能很有价值。

更新日期:2021-09-07
down
wechat
bug