当前位置: X-MOL 学术Polym. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Temperature-/Frequency-dependent complex viscosity and tensile modulus of polymer nanocomposites from the glassy state to the melting point
Polymer Engineering and Science ( IF 3.2 ) Pub Date : 2021-08-19 , DOI: 10.1002/pen.25786
Esmail Sharifzadeh 1 , Reza Mohammadi 2
Affiliation  

In this study, the temperature-/frequency-dependent viscosity and tensile modulus of polymer nanocomposites were evaluated using the combination of developed Arrhenius's equation and percolation theory. To involve the drastic effects of the polymer/particles interphase region and the aggregation/agglomeration of nanoparticles in the model, the Nielsen–Lewis model was developed and used to interpret the related parameters from heat conduction test results. The value of different state-to-state conversion degrees was calculated using the developed percolation theory whose validity was evaluated via comparative studies with theoretical results obtained from developed Arrhenius's equations. The simultaneous effects of the nanoparticles content and temperature/frequency on the viscosity and tensile modulus were also studied, which defined the role of some important phenomena such as the breakdown of the nanoparticle clusters, the increased cluster stability by polar surface modifiers, the increased thermal conductivity of the nanocomposite due to the presence of nanoparticles, etc. Different PA nanocomposites samples, containing 1–4 vol% of spherical silica nanoparticles, were prepared and subject to dynamical mechanical analysis, by temperature ramps and frequency sweep, and the results were used to evaluate the accuracy of the model. The surface of the nanoparticles was chemically modified with (3-aminopropyl)triethoxysilane to ensure their perfect compatibility with PA phase.

中文翻译:

聚合物纳米复合材料从玻璃态到熔点的温度/频率相关复数粘度和拉伸模量

在这项研究中,聚合物纳米复合材料的温度/频率相关粘度和拉伸模量使用开发的阿伦尼乌斯方程和渗流理论相结合进行了评估。为了在模型中涉及聚合物/颗粒界面区域和纳米颗粒的聚集/团聚的剧烈影响,开发了 Nielsen-Lewis 模型并用于解释来自热传导测试结果的相关参数。不同状态到状态转换度的值是使用已发展的渗透理论计算的,该理论的有效性是通过比较研究与从已发展的 Arrhenius 方程获得的理论结果进行评估的。还研究了纳米颗粒含量和温度/频率对粘度和拉伸模量的同时影响,它定义了一些重要现象的作用,例如纳米粒子簇的分解、极性表面改性剂增加的簇稳定性、由于纳米粒子的存在而增加的纳米复合材料的热导率等。不同的 PA 纳米复合材料样品,包含 1-制备 4 vol% 的球形二氧化硅纳米粒子,并通过温度斜坡和频率扫描进行动态力学分析,结果用于评估模型的准确性。纳米粒子的表面用(3-氨基丙基)三乙氧基硅烷进行了化学改性,以确保它们与 PA 相的完美相容性。由于纳米颗粒的存在,纳米复合材料的热导率增加。结果用于评估模型的准确性。纳米粒子的表面用(3-氨基丙基)三乙氧基硅烷进行了化学改性,以确保它们与 PA 相的完美相容性。由于纳米颗粒的存在,纳米复合材料的热导率增加。结果用于评估模型的准确性。纳米粒子的表面用(3-氨基丙基)三乙氧基硅烷进行了化学改性,以确保它们与 PA 相的完美相容性。
更新日期:2021-10-01
down
wechat
bug