当前位置: X-MOL 学术J. Adv. Model. Earth Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Adapting the MPAS Dynamical Core for Applications Extending Into the Thermosphere
Journal of Advances in Modeling Earth Systems ( IF 6.8 ) Pub Date : 2021-08-19 , DOI: 10.1029/2021ms002499
J. B. Klemp 1 , W. C. Skamarock 1
Affiliation  

To extend the nonhydrostatic global Model for Prediction Across Scales (MPAS) for deep-atmosphere (geospace) applications, we have modified the model equations and numerics to include variable atmospheric composition and (potentially large) molecular viscosity and thermal conductivity. The split-explicit numerical integration techniques in MPAS remain stable in idealized test cases for atmospheric domains extending into the upper thermosphere and continue to provide an efficient numerical framework for nonhydrostatic simulations. Variations in the atmospheric constituents influence the dynamical equations by altering the heat capacity and ideal gas constants. These feedbacks require little alteration of the dynamical equations although our testing reveals that the amplitude of disturbances may be sensitive to even small variations in the thermodynamic coefficients. Although the potential temperature is no longer formally conserved for adiabatic flow, it remains effective as a prognostic thermodynamic variable in the model equations. Molecular viscosity and thermal conductivity are dominant influences in the upper thermosphere and are represented implicitly in the model numerics. Because of the large magnitude of these terms, their treatment, though stable, may significantly under represent the true magnitude of their damping effects. Further consideration of these deep-atmosphere extensions to MPAS will be explored in more realistic simulations of thermospheric dynamics.

中文翻译:

为扩展到热层的应用调整 MPAS 动力核心

为了扩展用于深层大气(地理空间)应用的非静水力全球跨尺度预测模型 (MPAS),我们修改了模型方程和数值,以包括可变的大气成分和(可能很大)分子粘度和热导率。MPAS 中的拆分显式数值积分技术在大气域延伸到热层上部的理想化测试案例中保持稳定,并继续为非静水力学模拟提供有效的数值框架。大气成分的变化通过改变热容和理想气体常数来影响动力学方程。尽管我们的测试表明扰动的幅度可能对热力学系数的微小变化很敏感,但这些反馈几乎不需要对动力学方程进行更改。尽管位温对于绝热流不再正式守恒,但它在模型方程中作为预测热力学变量仍然有效。分子粘度和热导率是上层热层的主要影响因素,并隐含在模型数值中。由于这些项的量级很大,它们的处理虽然稳定,但可能明显低于其阻尼效应的真实量级。将在更真实的热层动力学模拟中进一步考虑将这些深层大气扩展到 MPAS。尽管位温对于绝热流不再正式守恒,但它在模型方程中作为预测热力学变量仍然有效。分子粘度和热导率是上层热层的主要影响因素,并隐含在模型数值中。由于这些项的量级很大,它们的处理虽然稳定,但可能明显低于其阻尼效应的真实量级。将在更真实的热层动力学模拟中进一步考虑将这些深层大气扩展到 MPAS。尽管位温对于绝热流不再正式守恒,但它在模型方程中作为预测热力学变量仍然有效。分子粘度和热导率是上层热层的主要影响因素,并隐含在模型数值中。由于这些项的量级很大,它们的处理虽然稳定,但可能明显低于其阻尼效应的真实量级。将在更真实的热层动力学模拟中进一步考虑将这些深层大气扩展到 MPAS。分子粘度和热导率是上层热层的主要影响因素,并隐含在模型数值中。由于这些项的量级很大,它们的处理虽然稳定,但可能明显低于其阻尼效应的真实量级。将在更真实的热层动力学模拟中进一步考虑将这些深层大气扩展到 MPAS。分子粘度和热导率是上层热层的主要影响因素,并隐含在模型数值中。由于这些项的量级很大,它们的处理虽然稳定,但可能明显低于其阻尼效应的真实量级。将在更真实的热层动力学模拟中进一步考虑将这些深层大气扩展到 MPAS。
更新日期:2021-09-01
down
wechat
bug