当前位置: X-MOL 学术Adv. Space Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A binary discrete particle swarm optimization satellite selection algorithm with a queen informant for Multi-GNSS continuous positioning
Advances in Space Research ( IF 2.6 ) Pub Date : 2021-08-19 , DOI: 10.1016/j.asr.2021.08.013
Dongqing Zhao 1 , Congcong Cai 1 , Linyang Li 1
Affiliation  

Currently, there are more than 130 available navigation satellites, a much larger scale low earth orbit (LEO) satellites will be deployed in the near future. However, limited by computational performance, capacity and receiver channels, a subset of all visible satellites is suggested to be selected with a with better geometric dilution of precision (GDOP). Since a reduced set of used satellite will have little effect on positioning accuracy, in contrast, higher real-time performance will be obtained. In view of the problems of the particle swarm optimization (PSO) algorithm for satellites selection, we adopt an easy binary particle swarm optimization with a queen informant (EPSOq) algorithm. This avoids the concept of “speed” in the discrete PSO algorithm and directly calculates the probability of position value when updating particles, with a queen particle used to accelerate convergence. Further, considering the continuity of positioning, we use a sequence to determine whether satellite re-selection is necessary. If the visible satellite has not changed greatly, the results of the last satellite selection is used instead of selecting new satellites. The observation data collected in the East China Sea is utilized in the experiment. Compared with the traversal method which requires 51.215 s, the average calculation time of EPSOq-C is only 0.0025 s with a population size of 70, and the calculation speed is an order of magnitude faster than the PSO algorithm. Furthermore, the distribution of GDOP bias derived from EPSOq-C is more concentrated than the PSO algorithm.



中文翻译:

一种用于多GNSS连续定位的女王信息人二元离散粒子群优化卫星选择算法

目前,有130多颗可用的导航卫星,不久的将来将部署更大规模的低地球轨道(LEO)卫星。然而,受计算性能、容量和接收器信道的限制,建议选择具有更好几何精度稀释 (GDOP) 的所有可见卫星的子集。由于减少了一组使用的卫星对定位精度的影响很小,相反,可以获得更高的实时性能。针对用于卫星选择的粒子群优化(PSO)算法存在的问题,我们采用了一种简单的二元粒子群优化和女王信息人(EPSOq)算法。这避免了离散PSO算法中“速度”的概念,直接计算更新粒子时位置值的概率,使用皇后粒子加速收敛。此外,考虑到定位的连续性,我们使用一个序列来确定是否需要卫星重选。如果可见卫星变化不大,则使用上次卫星选择的结果,而不是选择新卫星。实验利用在东海收集的观测资料。与需要51.215 s的遍历方法相比,EPSOq-C的平均计算时间仅为0.0025 s,种群规模为70,计算速度比PSO算法快一个数量级。此外,从 EPSOq-C 导出的 GDOP 偏差的分布比 PSO 算法更集中。我们使用一个序列来确定是否需要卫星重选。如果可见卫星变化不大,则使用上次卫星选择的结果,而不是选择新卫星。实验利用在东海收集的观测资料。与需要51.215 s的遍历方法相比,EPSOq-C的平均计算时间仅为0.0025 s,种群规模为70,计算速度比PSO算法快一个数量级。此外,从 EPSOq-C 导出的 GDOP 偏差的分布比 PSO 算法更集中。我们使用一个序列来确定是否需要卫星重选。如果可见卫星变化不大,则使用上次卫星选择的结果,而不是选择新卫星。实验利用在东海收集的观测资料。与需要51.215 s的遍历方法相比,EPSOq-C的平均计算时间仅为0.0025 s,种群规模为70,计算速度比PSO算法快一个数量级。此外,从 EPSOq-C 导出的 GDOP 偏差的分布比 PSO 算法更集中。实验利用在东海收集的观测资料。与需要51.215 s的遍历方法相比,EPSOq-C的平均计算时间仅为0.0025 s,种群规模为70,计算速度比PSO算法快一个数量级。此外,从 EPSOq-C 导出的 GDOP 偏差的分布比 PSO 算法更集中。实验利用在东海收集的观测资料。与需要51.215 s的遍历方法相比,EPSOq-C的平均计算时间仅为0.0025 s,种群规模为70,计算速度比PSO算法快一个数量级。此外,从 EPSOq-C 导出的 GDOP 偏差的分布比 PSO 算法更集中。

更新日期:2021-09-22
down
wechat
bug