当前位置: X-MOL 学术Int. J. Engine Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-time engine model development based on time complexity analysis
International Journal of Engine Research ( IF 2.5 ) Pub Date : 2021-08-16 , DOI: 10.1177/14680874211039706
Haotian Chen 1 , Kun Zhang 1 , Kangyao Deng 1, 2 , Yi Cui 1, 2
Affiliation  

Real-time simulation models play an important role in the development of engine control systems. The mean value model (MVM) meets real-time requirements but has limited accuracy. By contrast, a crank-angle resolved model, such as the filling -and-empty model, can be used to simulate engine performance with high accuracy but cannot meet real-time requirements. Time complexity analysis is used to develop a real-time crank-angle resolved model with high accuracy in this study. A method used in computer science, program static analysis, is used to theoretically determine the computational time for a multicylinder engine filling-and-empty (crank-angle resolved) model. Then, a prediction formula for the engine cycle simulation time is obtained and verified by a program run test. The influence of the time step, program structure, algorithm and hardware on the cycle simulation time are analyzed systematically. The multicylinder phase shift method and a fast calculation method for the turbocharger characteristics are used to improve the crank-angle resolved filling-and-empty model to meet real-time requirements. The improved model meets the real-time requirement, and the real-time factor is improved by 3.04 times. A performance simulation for a high-power medium-speed diesel engine shows that the improved model has a max error of 5.76% and a real-time factor of 3.93, which meets the requirement for a hardware-in-the-loop (HIL) simulation during control system development.



中文翻译:

基于时间复杂度分析的实时发动机模型开发

实时仿真模型在发动机控制系统的开发中发挥着重要作用。平均值模型(MVM)满足实时性要求,但精度有限。相比之下,曲柄角解析模型,如装空模型,可用于高精度模拟发动机性能,但不能满足实时要求。在本研究中,时间复杂度分析用于开发具有高精度的实时曲柄角解析模型。计算机科学中使用的一种方法,即程序静态分析,用于从理论上确定多缸发动机加空(曲柄角解析)模型的计算时间。然后,得到发动机循环仿真时间的预测公式,并通过程序运行测试进行验证。时间步长、程序结构、系统地分析了循环仿真时间的算法和硬件。采用多缸相移法和涡轮增压器特性快速计算方法改进曲轴转角解析的充空模型,以满足实时性要求。改进后的模型满足实时性要求,实时性提高了3.04倍。大功率中速柴油机性能仿真表明,改进模型最大误差为5.76%,实时系数为3.93,满足硬件在环(HIL)要求控制系统开发过程中的模拟。采用多缸相移法和涡轮增压器特性快速计算方法改进曲轴转角解析的充空模型,以满足实时性要求。改进后的模型满足实时性要求,实时性提高了3.04倍。大功率中速柴油机性能仿真表明,改进模型最大误差为5.76%,实时系数为3.93,满足硬件在环(HIL)要求控制系统开发过程中的模拟。采用多缸相移法和涡轮增压器特性快速计算方法改进曲轴转角解析的充空模型,以满足实时性要求。改进后的模型满足实时性要求,实时性提高了3.04倍。大功率中速柴油机性能仿真表明,改进模型最大误差为5.76%,实时系数为3.93,满足硬件在环(HIL)要求控制系统开发过程中的模拟。

更新日期:2021-08-17
down
wechat
bug