当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Suppression of Hot-Carrier Effects Facilitated by the Multimodal Thin-Film Transistor Architecture
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2021-08-16 , DOI: 10.1002/aelm.202100533
Eva Bestelink 1 , Olivier Sagazan 2 , Lea Motte 1 , Radu A. Sporea 1
Affiliation  

Hot-carrier effects are a persistent challenge for Ohmic contact, high carrier mobility thin-film transistors. As semiconductor properties are systematically improved, such phenomena (e.g., the kink effect) are becoming apparent even in materials such as InGaZnO. Few of the past solutions are practical in these low-complexity semiconductor systems. Here, it is shown that contact-controlled devices offer robust performance under extreme biasing conditions due to their distinctive charge injection processes. The recently-developed multimodal transistor (MMT) provides further control still, by separate regulation of current flow and magnitude. Internal electric field distributions in the source and drain regions are studied via technology computer-aided design simulations, and support the formulation of operational guidelines for the MMT's channel control gate for optimal characteristics in saturation. As MMT principles are universal, these findings should inform device design and operation in all high carrier mobility material systems.

中文翻译:

多模态薄膜晶体管结构有助于抑制热载流子效应

热载流子效应是欧姆接触、高载流子迁移率薄膜晶体管的持续挑战。随着半导体性能的系统性改进,即使在 InGaZnO 等材料中,这种现象(例如,扭结效应)也变得明显。过去的解决方案在这些低复杂性半导体系统中几乎没有实用价值。在这里,表明接触控制的器件由于其独特的电荷注入过程而在极端偏置条件下提供稳健的性能。最近开发的多模式晶体管 (MMT) 通过单独调节电流和幅度提供进一步的控制。通过技术计算机辅助设计模拟研究源极和漏极区域的内部电场分布,并支持 MMT' 操作指南的制定 s 通道控制门以获得最佳的饱和特性。由于 MMT 原理是通用的,因此这些发现应该为所有高载流子迁移率材料系统中的器件设计和操作提供信息。
更新日期:2021-09-10
down
wechat
bug