当前位置: X-MOL 学术Nat. Rev. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites
Nature Reviews Chemistry ( IF 36.3 ) Pub Date : 2021-08-13 , DOI: 10.1038/s41570-021-00309-x
Dominik J Kubicki 1, 2 , Samuel D Stranks 1, 3 , Clare P Grey 2 , Lyndon Emsley 4
Affiliation  

Solid-state magic-angle spinning NMR spectroscopy is a powerful technique to probe atomic-level microstructure and structural dynamics in metal halide perovskites. It can be used to measure dopant incorporation, phase segregation, halide mixing, decomposition pathways, passivation mechanisms, short-range and long-range dynamics, and other local properties. This Review describes practical aspects of recording solid-state NMR data on halide perovskites and how these afford unique insights into new compositions, dopants and passivation agents. We discuss the applicability, feasibility and limitations of 1H, 13C, 15N, 14N, 133Cs, 87Rb, 39K, 207Pb, 119Sn, 113Cd, 209Bi, 115In, 19F and 2H NMR in typical experimental scenarios. We highlight the pivotal complementary role of solid-state mechanosynthesis, which enables highly sensitive NMR studies by providing large quantities of high-purity materials of arbitrary complexity and of chemical shifts calculated using density functional theory. We examine the broader impact of solid-state NMR on materials research and how its evolution over seven decades has benefitted structural studies of contemporary materials such as halide perovskites. Finally, we summarize some of the open questions in perovskite optoelectronics that could be addressed using solid-state NMR. We, thereby, hope to stimulate wider use of this technique in materials and optoelectronics research.



中文翻译:

核磁共振光谱探测金属卤化物钙钛矿的微观结构、动力学和掺杂

固态魔角旋转核磁共振波谱是一种探测金属卤化物钙钛矿原子级微观结构和结构动力学的强大技术。它可用于测量掺杂剂掺入、相分离、卤化物混合、分解途径、钝化机制、短程和长程动力学以及其他局部特性。本综述描述了在卤化物钙钛矿上记录固态 NMR 数据的实际方面,以及这些如何为新成分、掺杂剂和钝化剂提供独特的见解。我们讨论了1 H、13 C、15 N、14 N、133 Cs、87 Rb、39 K、207的适用性、可行性和局限性Pb、119 Sn、113 Cd、209 Bi、115 In、19 F 和2典型实验场景中的 H NMR。我们强调了固态机械合成的关键补充作用,它通过提供大量任意复杂的高纯度材料和使用密度泛函理论计算的化学位移来实现高灵敏度的 NMR 研究。我们研究了固态核磁共振对材料研究的更广泛影响,以及它在过去 7 年的演变如何有益于当代材料(如卤化物钙钛矿)的结构研究。最后,我们总结了钙钛矿光电子学中一些可以使用固态 NMR 解决的未解决问题。因此,我们希望促进这种技术在材料和光电子学研究中的更广泛应用。

更新日期:2021-08-15
down
wechat
bug