当前位置: X-MOL 学术EPL › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
PC-silicene: A two-dimensional silicene allotrope with strong anisotropic conductance
EPL ( IF 1.8 ) Pub Date : 2021-08-10 , DOI: 10.1209/0295-5075/134/57004
Yan Qian , Erjun Kan , Kaiming Deng , Haiping Wu

Among the reported two-dimensional silicon materials, only hexagonal and kagome-like silicene have been reported experimentally. Thus, designing such materials with another strategy is desirable. Based on the experimentally synthesized pentagonal silicon cluster recently and via a swarm structure search method, herein we report a two-dimensional silicene allotrope by combining pentagonal silicon clusters. Further calculations show that this silicene allotrope exhibits great anisotropic conductance, it behaves as a metal with linear energy dispersions along the b -direction and Dirac point located at about 0.10 eV below the Fermi energy level, while it exhibits semiconducting state along the a -direction. This strong anisotropic conductance is driven by the different coordination numbers of silicon atoms. Through hydrogenating the three-fold coordinated silicon atoms, the silicene allotrope would turn into a semiconductor with a direct band gap of 1.60 eV (2.05 eV under HSE level). Particularly, the hydrogenated model possesses high carrier mobility of ${\sim}4.25\times10^{3}$ and ${\sim}2.00\times10^{5}\ \text{cm}^{2}\text{V}^{-1}\text{s}^{-1}$ at room temperature for electrons and holes, respectively. This finding promotes potential applications of silicon nanomaterials in in-plane anisotropic nanoelectronic, high-speed electronic, and photovoltaic devices.



中文翻译:

PC-silicene:具有强各向异性电导的二维硅烯同素异形体

在已报道的二维硅材料中,实验上仅报道了六角形和类kagome 硅烯。因此,使用另一种策略设计此类材料是可取的。基于最近实验合成的五边形硅簇,通过群结构搜索方法,我们在此报告了一种通过组合五边形硅簇的二维硅烯同素异形体。进一步的计算表明,该硅烯同素异形体显示出很大的各向异性导电性,其表现为与沿着线性能量分散体的金属b -方向和狄拉克点位于下面的费米能级约0.10电子伏特,而它显示出沿半导体状态-方向。这种强大的各向异性电导是由硅原子的不同配位数驱动的。通过氢化三重配位的硅原子,硅烯同素异形体将变成直接带隙为 1.60 eV(HSE 水平下为 2.05 eV)的半导体。特别是,氢化模型分别具有电子和空穴的高载流子迁移率${\sim}4.25\times10^{3}$ ${\sim}2.00\times10^{5}\ \text{cm}^{2}\text{V}^{-1}\text{s}^{-1}$ 室温下的载流子迁移率。这一发现促进了硅纳米材料在面内各向异性纳米电子、高速电子和光伏器件中的潜在应用。

更新日期:2021-08-10
down
wechat
bug