当前位置: X-MOL 学术Quantum Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum computer-aided design of quantum optics hardware
Quantum Science and Technology ( IF 6.7 ) Pub Date : 2021-08-03 , DOI: 10.1088/2058-9565/abfc94
Jakob S Kottmann 1, 2 , Mario Krenn 1, 2, 3 , Thi Ha Kyaw 1, 2 , Sumner Alperin-Lea 1 , Aln Aspuru-Guzik 1, 2, 3, 4
Affiliation  

The parameters of a quantum system grow exponentially with the number of involved quantum particles. Hence, the associated memory requirement to store or manipulate the underlying wavefunction goes well beyond the limit of the best classical computers for quantum systems composed of a few dozen particles, leading to serious challenges in their numerical simulation. This implies that the verification and design of new quantum devices and experiments are fundamentally limited to small system size. It is not clear how the full potential of large quantum systems can be exploited. Here, we present the concept of quantum computer designed quantum hardware and apply it to the field of quantum optics. Specifically, we map complex experimental hardware for high-dimensional, many-body entangled photons into a gate-based quantum circuit. We show explicitly how digital quantum simulation of Boson sampling experiments can be realized. We then illustrate how to design quantum-optical setups for complex entangled photonic systems, such as high-dimensional Greenberger–Horne–Zeilinger states and their derivatives. Since photonic hardware is already on the edge of quantum supremacy and the development of gate-based quantum computers is rapidly advancing, our approach promises to be a useful tool for the future of quantum device design.



中文翻译:

量子光学硬件的量子计算机辅助设计

量子系统的参数随着涉及的量子粒子数量呈指数增长。因此,存储或操作底层波函数的相关内存要求远远超出了由几十个粒子组成的量子系统的最佳经典计算机的限制,导致其数值模拟面临严峻挑战。这意味着新量子设备和实验的验证和设计从根本上限制在小系统尺寸上。目前尚不清楚如何充分利用大型量子系统的潜力。在这里,我们提出了量子计算机设计的量子硬件的概念,并将其应用于量子光学领域。具体来说,我们将用于高维、多体纠缠光子的复杂实验硬件映射到基于门的量子电路中。我们明确地展示了如何实现玻色子采样实验的数字量子模拟。然后,我们将说明如何为复杂的纠缠光子系统设计量子光学装置,例如高维 Greenberger-Horne-Zeilinger 态及其衍生物。由于光子硬件已经处于量子霸权的边缘,并且基于门的量子计算机的发展正在迅速推进,我们的方法有望成为未来量子器件设计的有用工具。

更新日期:2021-08-03
down
wechat
bug