当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A novel mechanism of enhanced transcription activity and fidelity for influenza A viral RNA-dependent RNA polymerase
Nucleic Acids Research ( IF 14.9 ) Pub Date : 2021-07-26 , DOI: 10.1093/nar/gkab660
Xinzhou Xu 1, 2 , Lu Zhang 3, 4 , Julie Tung Sem Chu 5 , Yuqing Wang 1, 2 , Alex Wing Hong Chin 5, 6 , Tin Hang Chong 1, 7 , Zixi Dai 7 , Leo Lit Man Poon 5, 6, 8 , Peter Pak-Hang Cheung 1, 7, 9, 10 , Xuhui Huang 1, 7
Affiliation  

During RNA elongation, the influenza A viral (IAV) RNA-dependent RNA polymerase (RdRp) residues in the active site interact with the triphosphate moiety of nucleoside triphosphate (NTP) for catalysis. The molecular mechanisms by which they control the rate and fidelity of NTP incorporation remain elusive. Here, we demonstrated through enzymology, virology and computational approaches that the R239 and K235 in the PB1 subunit of RdRp are critical to controlling the activity and fidelity of transcription. Contrary to common beliefs that high-fidelity RdRp variants exert a slower incorporation rate, we discovered a first-of-its-kind, single lysine-to-arginine mutation on K235 exhibited enhanced fidelity and activity compared with wild-type. In particular, we employed a single-turnover NTP incorporation assay for the first time on IAV RdRp to show that K235R mutant RdRp possessed a 1.9-fold increase in the transcription activity of the cognate NTP and a 4.6-fold increase in fidelity compared to wild-type. Our all-atom molecular dynamics simulations further elucidated that the higher activity is attributed to the shorter distance between K235R and the triphosphate moiety of NTP compared with wild-type. These results provide novel insights into NTP incorporation and fidelity control mechanisms, which lay the foundation for the rational design of IAV vaccine and antiviral targets.

中文翻译:

一种增强甲型流感病毒 RNA 依赖性 RNA 聚合酶转录活性和保真度的新机制

在 RNA 延伸过程中,活性位点中的甲型流感病毒 (IAV) RNA 依赖性 RNA 聚合酶 (RdRp) 残基与三磷酸核苷 (NTP) 的三磷酸部分相互作用以进行催化。它们控制 NTP 掺入的速率和保真度的分子机制仍然难以捉摸。在这里,我们通过酶学、病毒学和计算方法证明 RdRp 的 PB1 亚基中的 R239 和 K235 对于控制转录的活性和保真度至关重要。与高保真 RdRp 变体的掺入率较低的普遍看法相反,我们发现与野生型相比,K235 上的首个单一赖氨酸到精氨酸突变表现出增强的保真度和活性。特别是,我们首次在 IAV RdRp 上使用单周转 NTP 掺入测定,以表明与野生型相比,K235R 突变体 RdRp 的同源 NTP 转录活性增加了 1.9 倍,保真度增加了 4.6 倍。我们的全原子分子动力学模拟进一步阐明,与野生型相比,更高的活性归因于 K235R 与 NTP 的三磷酸部分之间的距离更短。这些结果为 NTP 掺入和保真度控制机制提供了新的见解,为 IAV 疫苗和抗病毒靶点的合理设计奠定了基础。我们的全原子分子动力学模拟进一步阐明,与野生型相比,更高的活性归因于 K235R 与 NTP 的三磷酸部分之间的距离更短。这些结果为 NTP 掺入和保真度控制机制提供了新的见解,为 IAV 疫苗和抗病毒靶点的合理设计奠定了基础。我们的全原子分子动力学模拟进一步阐明,与野生型相比,更高的活性归因于 K235R 与 NTP 的三磷酸部分之间的距离更短。这些结果为 NTP 掺入和保真度控制机制提供了新的见解,为 IAV 疫苗和抗病毒靶点的合理设计奠定了基础。
更新日期:2021-07-26
down
wechat
bug