当前位置: X-MOL 学术Adv. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces
Advances in Colloid and Interface Science ( IF 15.6 ) Pub Date : 2021-08-11 , DOI: 10.1016/j.cis.2021.102503
Shao-Fei Zheng 1 , Ulrich Gross 2 , Xiao-Dong Wang 1
Affiliation  

As a ubiquitous vapor-liquid phase-change process, dropwise condensation has attracted tremendous research attention owing to its remarkable efficiency of energy transfer and transformative industrial potential. In recent years, advanced functional surfaces, profiting from great progress in modifying micro/nanoscale features and surface chemistry on surfaces, have led to exciting advances in both heat transfer enhancement and fundamental understanding of dropwise condensation. In this review, we discuss the development of some key components for achieving performance improvement of dropwise condensation, including surface wettability, nucleation, droplet mobility, and growth, and discuss how they can be elaborately controlled as desired using surface design. We also present an overview of dropwise condensation heat transfer enhancement on advanced functional surfaces along with the underlying mechanisms, such as jumping condensation on nanostructured superhydrophobic surfaces, and new condensation characteristics (e.g., Laplace pressure-driven droplet motion, hierarchical condensation, and sucking flow condensation) on hierarchically structured surfaces. Finally, the durability, cost, and scalability of specific functional surfaces are focused on for future industrial applications. The existing challenges, alternative strategies, as well as future perspectives, are essential in the fundamental and applied aspects for the practical implementation of dropwise condensation.



中文翻译:

滴状凝聚:从润湿、成核和液滴迁移的基本原理到先进功能表面的性能改进

作为一种普遍存在的气液相变过程,逐滴冷凝因其显着的能量转移效率和变革性工业潜力而引起了极大的研究关注。近年来,先进的功能表面得益于在表面微/纳米尺度特征和表面化学改性方面的巨大进步,在传热增强和对滴状冷凝的基本理解方面取得了令人振奋的进展。在这篇综述中,我们讨论了实现滴状冷凝性能改进的一些关键组件的开发,包括表面润湿性、成核、液滴迁移率和生长,并讨论如何使用表面设计根据需要精心控制它们。我们还概述了高级功能表面上逐滴冷凝传热增强的潜在机制,例如纳米结构超疏水表面上的跳跃冷凝和新的冷凝特性(例如,拉普拉斯压力驱动的液滴运动、分层冷凝和吸流冷凝)在分层结构的表面上。最后,特定功能表面的耐用性、成本和可扩展性是未来工业应用的重点。现有的挑战、替代策略以及未来的前景对于逐滴冷凝的实际实施的基础和应用方面至关重要。以及分层结构表面上的新冷凝特性(例如,拉普拉斯压力驱动的液滴运动、分层冷凝和吸流冷凝)。最后,特定功能表面的耐用性、成本和可扩展性是未来工业应用的重点。现有的挑战、替代策略以及未来的前景对于逐滴冷凝的实际实施的基础和应用方面至关重要。以及分层结构表面上的新冷凝特性(例如,拉普拉斯压力驱动的液滴运动、分层冷凝和吸流冷凝)。最后,特定功能表面的耐用性、成本和可扩展性是未来工业应用的重点。现有的挑战、替代策略以及未来的前景对于逐滴冷凝的实际实施的基础和应用方面至关重要。

更新日期:2021-08-16
down
wechat
bug