当前位置: X-MOL 学术J. Mol. Graph. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Density functional theory-based analyses on selective gas separation by β-PVDF-supported ionic liquid membranes
Journal of Molecular Graphics and Modelling ( IF 2.9 ) Pub Date : 2021-08-11 , DOI: 10.1016/j.jmgm.2021.108004
Ranjini Sarkar 1 , Tarun Kumar Kundu 1
Affiliation  

Finding proper candidates for polymer-supported ionic liquid (IL)-based gas separating membranes is a challenge. The current article elucidates the quantum chemical perspective of the selective gas adsorption efficiency, from a mixture of CO2, CO, CH4, and H2, of α- and β-polyvinylidene fluoride (PVDF)-supported imidazolium- and pyridinium-based six ionic liquid membranes. Although IL-based membrane efficiency mainly depends on the gas solubility of ILs, IL/support binding and gas adsorption on the support material are also studied to describe the overall gas adsorption properties of the PVDF/IL complexes. β-PVDF exhibits better binding with the ILs, and better gas affinity, thus, qualified as a more suitable membrane component as compared to α-PVDF. Dispersion-corrected density functional calculations are performed to provide a detailed insight into the energetic interactions, nonbonding intermolecular interactions based on symmetry adapted perturbation theory (SAPT), natural bond orbitals (NBO), Bader's quantum theory of atoms in molecules (QTAIM), reduced density gradient (RDG), frontier orbital interactions, density of states (DOS), and thermochemical analyses of the gas-adsorbed systems. Gas molecules interact with the membrane components through weak hydrogen bonds and exhibit low interaction energies, indicating physisorption of the gases. Gas adsorption energies are more negative than the mutual interaction energies of the gas molecules, ensuring effective gas adsorption by the membrane components. All the β-PVDF/IL systems have shown the highest and lowest affinity for CO2 and H2, respectively, leading to effective separation of CO2 and H2 from the other gases.



中文翻译:

基于密度泛函理论的 β-PVDF 负载离子液体膜选择性气体分离分析

为基于聚合物负载的离子液体 (IL) 的气体分离膜寻找合适的候选物是一项挑战。当前文章从 CO 2、CO、CH 4和 H 2的混合物中阐明了选择性气体吸附效率的量子化学观点, α-和β-聚偏二氟乙烯 (PVDF) 支撑的咪唑鎓和吡啶鎓基六离子液体膜。尽管基于 IL 的膜效率主要取决于 IL 的气体溶解度,但也研究了 IL/载体结合和载体材料上的气体吸附,以描述 PVDF/IL 复合物的整体气体吸附特性。β-PVDF 与 ILs 具有更好的结合力和更好的气体亲和力,因此与 α-PVDF 相比,它被认为是更合适的膜成分。执行色散校正密度泛函计算,以提供对能量相互作用、基于对称适应微扰理论 (SAPT)、自然键轨道 (NBO)、Bader 的分子中原子量子理论 (QTAIM) 的非键分子间相互作用的详细了解,减少密度梯度(RDG),气体吸附系统的前沿轨道相互作用、态密度 (DOS) 和热化学分析。气体分子通过弱氢键与膜成分相互作用并表现出低相互作用能,表明气体的物理吸附。气体吸附能比气体分子的相互作用能更负,保证了膜元件对气体的有效吸附。所有 β-PVDF/IL 系统分别对 CO2 和 H2 显示出最高和最低的亲和力,从而有效分离 CO 气体吸附能比气体分子的相互作用能更负,保证了膜元件对气体的有效吸附。所有 β-PVDF/IL 系统分别对 CO2 和 H2 显示出最高和最低的亲和力,从而有效分离 CO 气体吸附能比气体分子的相互作用能更负,保证了膜元件对气体的有效吸附。所有 β-PVDF/IL 系统分别对 CO2 和 H2 显示出最高和最低的亲和力,从而有效分离 CO2和 H 2来自其他气体。

更新日期:2021-08-23
down
wechat
bug