当前位置: X-MOL 学术J. Nanomater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manufacturing of Microfluidic Sensors Utilizing 3D Printing Technologies: A Production System
Journal of Nanomaterials ( IF 3.791 ) Pub Date : 2021-08-11 , DOI: 10.1155/2021/5537074
Danial Khorsandi 1 , Mehrab Nodehi 2 , Tayyab Waqar 3, 4, 5 , Majid Shabani 6, 7 , Behnam Kamare 6, 7 , Ehsan Nazarzadeh Zare 8 , Sezgin Ersoy 3, 4 , Mohsen Annabestani 6 , Mehmet Fatih Çelebi 4 , Abdullah Kafadenk 9
Affiliation  

3D integrated microfluid devices are a group of engineered microelectromechanical systems (MEMS) whereby the feature size and operating range of the components are on a microscale. These devices or systems have the ability to detect, control, activate, and create macroscale effects. On this basis, microfluidic chips are systems that enable microliters and smaller volumes of fluids to be controlled and moved within microscale-sized (one-millionth of a meter) channels. While this small scale can be compared to microfluid chips of larger applications, such as pipes or plumbing practices, their small size is commonly useful in controlling and monitoring the flow of fluid. Through such applications, microfluidic chip technology has become a popular tool for analysis in biochemistry and bioengineering with their most recent uses for artificial organ production. For this purpose, microfluidic chips can be instantly controlled by the human body, such as pulse, blood flow, blood pressure, and transmitting data such as location and the programmed agents. Despite its vast uses, the production of microfluidic chips has been mostly dependent upon conventional practices that are costly and often time consuming. More recently, however, 3D printing technology has been incorporated in rapidly prototyping microfluid chips at microscale for major uses. This state-of-the-art review highlights the recent advancements in the field of 3D printing technology for the rapid fabrication, and therefore mass production, of the microfluid chips.

中文翻译:

利用 3D 打印技术制造微流体传感器:生产系统

3D 集成微流体设备是一组工程微机电系统 (MEMS),其中组件的特征尺寸和操作范围处于微尺度。这些设备或系统具有检测、控制、激活和创建宏观效应的能力。在此基础上,微流控芯片是一种能够在微型(百万分之一米)通道内控制和移动微升和较小体积流体的系统。虽然这种小规模可以与更大应用(例如管道或管道实践)的微流体芯片进行比较,但它们的小​​尺寸通常可用于控制和监测流体流动。通过这样的应用,微流控芯片技术已成为生物化学和生物工程分析的流行工具,最近用于人造器官生产。为此,微流控芯片可以被人体即时控制,例如脉搏、血流、血压,并传输位置和程序化代理等数据。尽管其用途广泛,但微流控芯片的生产主要依赖于成本高昂且通常耗时的传统做法。然而,最近,3D 打印技术已被纳入主要用途的微型微流体芯片快速原型制作中。这篇最先进的评论强调了 3D 打印技术领域的最新进展,用于微流体芯片的快速制造,从而实现大规模生产。为此,微流控芯片可以被人体即时控制,例如脉搏、血流、血压,并传输位置和程序化代理等数据。尽管其用途广泛,但微流控芯片的生产主要依赖于成本高昂且通常耗时的传统做法。然而,最近,3D 打印技术已被纳入主要用途的微型微流体芯片快速原型制作中。这篇最先进的评论强调了 3D 打印技术领域的最新进展,用于微流体芯片的快速制造,从而实现大规模生产。为此,微流控芯片可以被人体即时控制,例如脉搏、血流、血压,并传输位置和程序化代理等数据。尽管其用途广泛,但微流控芯片的生产主要依赖于成本高昂且通常耗时的传统做法。然而,最近,3D 打印技术已被纳入主要用途的微型微流体芯片快速原型制作中。这篇最先进的评论强调了 3D 打印技术领域的最新进展,用于微流体芯片的快速制造,从而实现大规模生产。尽管其用途广泛,但微流控芯片的生产主要依赖于成本高昂且通常耗时的传统做法。然而,最近,3D 打印技术已被纳入主要用途的微型微流体芯片快速原型制作中。这篇最先进的评论强调了 3D 打印技术领域的最新进展,用于微流体芯片的快速制造,从而实现大规模生产。尽管其用途广泛,但微流控芯片的生产主要依赖于成本高昂且通常耗时的传统做法。然而,最近,3D 打印技术已被纳入主要用途的微型微流体芯片快速原型制作中。这篇最先进的评论强调了 3D 打印技术领域的最新进展,用于微流体芯片的快速制造,从而实现大规模生产。
更新日期:2021-08-11
down
wechat
bug