当前位置: X-MOL 学术Artif. Intell. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Neural network-based left ventricle geometry prediction from CMR images with application in biomechanics
Artificial Intelligence in Medicine ( IF 7.5 ) Pub Date : 2021-08-11 , DOI: 10.1016/j.artmed.2021.102140
Lukasz Romaszko 1 , Agnieszka Borowska 1 , Alan Lazarus 1 , David Dalton 1 , Colin Berry 2 , Xiaoyu Luo 1 , Dirk Husmeier 1 , Hao Gao 1
Affiliation  

Combining biomechanical modelling of left ventricular (LV) function and dysfunction with cardiac magnetic resonance (CMR) imaging has the potential to improve the prognosis of patient-specific cardiovascular disease risks. Biomechanical studies of LV function in three dimensions usually rely on a computerized representation of the LV geometry based on finite element discretization, which is essential for numerically simulating in vivo cardiac dynamics. Detailed knowledge of the LV geometry is also relevant for various other clinical applications, such as assessing the LV cavity volume and wall thickness. Accurately and automatically reconstructing personalized LV geometries from conventional CMR images with minimal manual intervention is still a challenging task, which is a pre-requisite for any subsequent automated biomechanical analysis. We propose a deep learning-based automatic pipeline for predicting the three-dimensional LV geometry directly from routinely-available CMR cine images, without the need to manually annotate the ventricular wall. Our framework takes advantage of a low-dimensional representation of the high-dimensional LV geometry based on principal component analysis. We analyze how the inference of myocardial passive stiffness is affected by using our automatically generated LV geometries instead of manually generated ones. These insights will inform the development of statistical emulators of LV dynamics to avoid computationally expensive biomechanical simulations. Our proposed framework enables accurate LV geometry reconstruction, outperforming previous approaches by delivering a reconstruction error 50% lower than reported in the literature. We further demonstrate that for a nonlinear cardiac mechanics model, using our reconstructed LV geometries instead of manually extracted ones only moderately affects the inference of passive myocardial stiffness described by an anisotropic hyperelastic constitutive law. The developed methodological framework has the potential to make an important step towards personalized medicine by eliminating the need for time consuming and costly manual operations. In addition, our method automatically maps the CMR scan into a low-dimensional representation of the LV geometry, which constitutes an important stepping stone towards the development of an LV geometry-heterogeneous emulator.



中文翻译:

基于神经网络的 CMR 图像左心室几何预测及其在生物力学中的应用

将左心室 (LV) 功能和功能障碍的生物力学模型与心脏磁共振 (CMR) 成像相结合,有可能改善患者特定心血管疾病风险的预后。LV 功能在三个维度上的生物力学研究通常依赖于基于有限元离散化的 LV 几何形状的计算机化表示,这对于数值模拟体内心脏动力学至关重要。LV 几何形状的详细知识也与各种其他临床应用相关,例如评估 LV 腔体积和壁厚。以最少的人工干预从传统 CMR 图像中准确、自动地重建个性化 LV 几何形状仍然是一项具有挑战性的任务,这是任何后续自动生物力学分析的先决条件。我们提出了一种基于深度学习的自动管道,用于直接从常规可用的 CMR 电影图像中预测 3D LV 几何形状,而无需手动注释心室壁。我们的框架利用基于主成分分析的高维 LV 几何的低维表示。我们通过使用我们自动生成的 LV 几何图形而不是手动生成的几何图形来分析心肌被动刚度的推断是如何受到影响的。这些见解将为 LV 动力学统计仿真器的开发提供信息,以避免计算成本高昂的生物力学模拟。我们提出的框架能够实现准确的 LV 几何重建,通过提供比文献中报道的低 50% 的重建误差,优于以前的方法。我们进一步证明,对于非线性心脏力学模型,使用我们重建的 LV 几何形状而不是手动提取的几何形状只会适度影响由各向异性超弹性本构定律描述的被动心肌刚度的推断。开发的方法框架有可能通过消除对耗时和昂贵的手动操作的需要,朝着个性化医疗迈出重要一步。此外,我们的方法自动将 CMR 扫描映射到 LV 几何的低维表示,这构成了开发 LV 几何异构仿真器的重要垫脚石。使用我们重建的 LV 几何形状而不是手动提取的几何形状只会适度影响由各向异性超弹性本构定律描述的被动心肌刚度的推断。开发的方法框架有可能通过消除对耗时和昂贵的手动操作的需要,朝着个性化医疗迈出重要一步。此外,我们的方法自动将 CMR 扫描映射到 LV 几何的低维表示,这构成了开发 LV 几何异构仿真器的重要垫脚石。使用我们重建的 LV 几何形状而不是手动提取的几何形状只会适度影响由各向异性超弹性本构定律描述的被动心肌刚度的推断。开发的方法框架有可能通过消除对耗时和昂贵的手动操作的需要,朝着个性化医疗迈出重要一步。此外,我们的方法自动将 CMR 扫描映射到 LV 几何的低维表示,这构成了开发 LV 几何异构仿真器的重要垫脚石。开发的方法框架有可能通过消除对耗时和昂贵的手动操作的需要,朝着个性化医疗迈出重要一步。此外,我们的方法自动将 CMR 扫描映射到 LV 几何的低维表示,这构成了开发 LV 几何异构仿真器的重要垫脚石。开发的方法框架有可能通过消除对耗时和昂贵的手动操作的需要,朝着个性化医疗迈出重要一步。此外,我们的方法自动将 CMR 扫描映射到 LV 几何的低维表示,这构成了开发 LV 几何异构仿真器的重要垫脚石。

更新日期:2021-08-27
down
wechat
bug