当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
All solid thick oxide cathodes based on low temperature sintering for high energy solid batteries
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2021-07-21 , DOI: 10.1039/d1ee01494c
Xiang Han 1, 2, 3 , Shanyu Wang 1 , Yaobin Xu 4 , Guiming Zhong 5 , Yang Zhou 6 , Bo Liu 7 , Xiaoyu Jiang 1 , Xiang Wang 4 , Yun Li 1 , Ziqi Zhang 3 , Songyan Chen 3 , Chongmin Wang 4 , Yong Yang 5 , Wenqing Zhang 8 , Junlan Wang 6 , Jun Liu 1, 4 , Jihui Yang 1
Affiliation  

Solid-state batteries (SSBs) could significantly improve the safety and energy density over conventional liquid cells. One key enabling technology is the use of solid electrolytes. NASICON-type Li1.3Al0.3Ti1.7(PO4)3 (LATP) is a very attractive solid-state electrolyte for the cathode side due to its high oxidation potential and high ionic conductivity. The usage, however, is limited by its large interfacial resistance against most of the cathode materials as well as the thermodynamic instability during high temperature sintering needed to achieve high mass density. Here we construct thin, percolative, and mixed conductive interphases through in situ low-melting-point liquid sintering. These mixed conductive interphases drastically improve the kinetics, leading to high-loading solid LATP/LiCoO2 cathodes achieving capacity loading of up to ∼6 mA h cm−2. The technique is also applicable to Ni-rich cathode materials, achieving up to ∼10 mAh cm−2, which can lead to more than 400 W h kg−1 cells in SSBs. Our composite cathodes show a ten-times and three-times area capacity improvement over the state-of-the-art cathodes using oxide and sulfide SSEs, respectively.

中文翻译:

用于高能固体电池的基于低温烧结的全固体厚氧化物正极

与传统液体电池相比,固态电池 (SSB) 可以显着提高安全性和能量密度。一项关键的使能技术是固体电解质的使用。NASICON 型 Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP) 由于其高氧化电位和高离子电导率,是一种非常有吸引力的阴极侧固态电解质。然而,其使用受到其对大多数阴极材料的大界面电阻以及实现高质量密度所需的高温烧结过程中的热力学不稳定性的限制。在这里,我们通过原位构建薄的、渗透的和混合的导电界面低熔点液体烧结。这些混合导电界面显着改善了动力学,导致高负载固体 LATP/LiCoO 2正极实现高达 ~6 mAh cm -2 的容量负载。该技术也适用于富镍正极材料,可实现高达 10 mAh cm -2 的容量,这可以在 SSB 中产生超过 400 W h kg -1 的电池。与使用氧化物和硫化物 SSE 的最先进正极相比,我们的复合正极的面积容量分别提高了十倍和三倍。
更新日期:2021-08-11
down
wechat
bug