当前位置: X-MOL 学术J. Low. Temp. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decoherence of Magneto-Bipolaron with Strong Coupling in a Quantum Dot Qubit Under Applied Electric Field
Journal of Low Temperature Physics ( IF 2 ) Pub Date : 2021-08-11 , DOI: 10.1007/s10909-021-02612-9
D. C. Ngoufack Guimapi 1, 2 , A. J. Fotue 1 , M. Silenou Mengoue 3 , A. E. Merad 2
Affiliation  

In this paper, we study the physical properties and decoherence of strong coupling magneto-bipolaron qubit in a quantum dot under the effect of an external electric field. The magneto-bipolaron energies of ground and first excited states are evaluated using the Pekar variational method. The decoherence time and entropy are also evaluated. All these calculations are intended to show firstly the effect of both the magnetic and the electric fields on the quasi-particles’ properties in the quantum dot. Our results show that all studied quasi-particles properties in the quantum dot are closely influenced by magnetic and electric fields. The decoherence time increases with increasing of the electric field strength, and decreases with increasing of the magnetic field strength and the electron–phonon coupling constant. From our analysis, it is obvious to see that the application of electric field and magnetic field have opposite effects on the qubit. Comparing both fields, the electric field is advantageous for qubit survival and information storage, while the magnetic field is detrimental to qubit survival and information storage, respectively. The entropy increases with increasing of the electric field strength, and decreases with increasing of the magnetic field strength. We also observe that in the absence of magnetic and electric fields, the entropy varies very slightly with the increase of the confinement strength. We can deduce that, these external fields can help us to modulate the period of information transfer in the system, and hence can be used to control its coherence.



中文翻译:

外加电场作用下量子点量子比特中强耦合磁双极子的退相干

在本文中,我们研究了外电场作用下量子点中强耦合磁双极子量子比特的物理性质和退相干性。使用 Pekar 变分方法评估基态和第一激发态的磁双极子能量。还评估退相干时间和熵。所有这些计算都旨在首先显示磁场和电场对量子点中准粒子特性的影响。我们的结果表明,量子点中所有研究的准粒子特性都受到磁场和电场的密切影响。退相干时间随着电场强度的增加而增加,随着磁场强度和电子-声子耦合常数的增加而减少。根据我们的分析,很明显,电场和磁场的应用对量子比特有相反的影响。比较这两个场,电场分别有利于量子位生存和信息存储,而磁场分别不利于量子位生存和信息存储。熵随着电场强度的增加而增加,随着磁场强度的增加而减少。我们还观察到,在没有磁场和电场的情况下,熵随着限制强度的增加而变化很小。我们可以推断,这些外部场可以帮助我们调节系统中信息传递的周期,从而可以用来控制其相干性。比较这两个场,电场分别有利于量子位生存和信息存储,而磁场分别不利于量子位生存和信息存储。熵随着电场强度的增加而增加,随着磁场强度的增加而减少。我们还观察到,在没有磁场和电场的情况下,熵随着限制强度的增加而变化很小。我们可以推断,这些外部场可以帮助我们调节系统中信息传递的周期,从而可以用来控制其相干性。比较这两个场,电场分别有利于量子位生存和信息存储,而磁场分别不利于量子位生存和信息存储。熵随着电场强度的增加而增加,随着磁场强度的增加而减少。我们还观察到,在没有磁场和电场的情况下,熵随着限制强度的增加而变化很小。我们可以推断,这些外部场可以帮助我们调节系统中信息传递的周期,从而可以用来控制其相干性。熵随着电场强度的增加而增加,随着磁场强度的增加而减少。我们还观察到,在没有磁场和电场的情况下,熵随着限制强度的增加而变化很小。我们可以推断,这些外部场可以帮助我们调节系统中信息传递的周期,从而可以用来控制其相干性。熵随着电场强度的增加而增加,随着磁场强度的增加而减少。我们还观察到,在没有磁场和电场的情况下,熵随着限制强度的增加而变化很小。我们可以推断,这些外部场可以帮助我们调节系统中信息传递的周期,从而可以用来控制其相干性。

更新日期:2021-08-11
down
wechat
bug