当前位置: X-MOL 学术Int. J. Refrig. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An experimentally validated evaporative phase change heat transfer model for low mass flux applications using R134a in plate heat exchangers
International Journal of Refrigeration ( IF 3.9 ) Pub Date : 2021-08-10 , DOI: 10.1016/j.ijrefrig.2021.08.003
John R. Simon 1 , Todd M. Bandhauer 1
Affiliation  

Plate frame heat exchangers are common in liquid-coupled vapor compression systems due to their compactness and ease of maintenance. In some of these systems, the refrigerant within the evaporator can enter the heat exchanger as a subcooled liquid. As a result, the refrigerant passes through three different phases: single-phase liquid, two-phase fluid, and a superheated vapor. Unfortunately, there have been limited prior studies that have identified the best method to predict performance under these circumstances. Furthermore, previous investigations have not evaluated refrigerant evaporation in large industrial sized plate frame heat exchangers under conditions experienced in the present study experimental test facility, especially at mass fluxes below 7 kg m−2 s−1. In the present investigation, a model was developed to predict the performance of plate and frame heat exchangers when the fluid enters as a subcooled liquid and exits as a superheated vapor. The model used full-sized plate heat exchanger geometry that was discretized into 20 sections to accurately capture local heat transfer and pressure drop effects. The model was validated using an R134a counter flow heat exchanger used in a turbo-compression cooling system test facility that had subcooled liquid entering the evaporator at low mass fluxes. A variety of empirical correlations were evaluated to determine what combination yielded the best predictive capability over the following range of conditions: 5.8 < G < 6.8 kg m−2 s−1, 2 < q″ < 2.8 kW m−2, and 10 °C < Tsat < 15 °C. When the correlations used a fixed control volume length in the heat flux calculation, the most accurate combination resulted in a mean absolute error of 5.5%. Future studies can use the approach described here to optimize heat exchanger size and performance.



中文翻译:

在板式换热器中使用 R134a 的低质量通量应用的经过实验验证的蒸发相变传热模型

板框式换热器因其结构紧凑且易于维护而在液体耦合蒸汽压缩系统中很常见。在其中一些系统中,蒸发器内的制冷剂可以作为过冷液体进入热交换器。结果,制冷剂通过三个不同的相:单相液体、两相流体和过热蒸汽。不幸的是,之前有限的研究确定了在这些情况下预测性能的最佳方法。此外,之前的研究并未评估在本研究实验测试设施中所经历的条件下,尤其是质量通量低于 7 kg m -2 s -1 的大型工业尺寸板框换热器中的制冷剂蒸发. 在本研究中,开发了一个模型来预测当流体作为过冷液体进入并作为过热蒸汽离开时板框式换热器的性能。该模型使用全尺寸板式换热器几何结构,该几何结构被离散为 20 个部分,以准确捕捉局部传热和压降效应。该模型使用 R134a 逆流换热器进行验证,该换热器用于涡轮压缩冷却系统测试设备,该设备使过冷液体以低质量通量进入蒸发器。评估了各种经验相关性以确定哪种组合在以下条件范围内产生最佳预测能力:5.8 <  G  < 6.8 kg m -2 s -1 , 2 <  q″ < 2.8 kW m -2,并且 10 °C <  T sat  < 15 °C。当相关性在热通量计算中使用固定的控制体积长度时,最准确的组合导致 5.5% 的平均绝对误差。未来的研究可以使用这里描述的方法来优化换热器的尺寸和性能。

更新日期:2021-08-10
down
wechat
bug