当前位置: X-MOL 学术Glob. Biogeochem. Cycles › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Arctic Strait of Two Halves: The Changing Dynamics of Nutrient Uptake and Limitation Across the Fram Strait
Global Biogeochemical Cycles ( IF 5.2 ) Pub Date : 2021-08-09 , DOI: 10.1029/2021gb006961
R. E. Tuerena 1 , J. Hopkins 2 , P. J. Buchanan 3 , R. S. Ganeshram 1 , L. Norman 3 , W‐Jvon‐Appen 4 , A. Tagliabue 3 , A. Doncila 1 , M. Graeve 4 , K‐U Ludwichowski 4 , P. A. Dodd 5 , C. de la Vega 3 , I. Salter 4 , C. Mahaffey 3
Affiliation  

The hydrography of the Arctic Seas is being altered by ongoing climate change, with knock-on effects to nutrient dynamics and primary production. As the major pathway of exchange between the Arctic and the Atlantic, the Fram Strait hosts two distinct water masses in the upper water column, northward flowing warm and saline Atlantic Waters in the east, and southward flowing cold and fresh Polar Surface Water in the west. Here, we assess how physical processes control nutrient dynamics in the Fram Strait using nitrogen isotope data collected during 2016 and 2018. In Atlantic Waters, a weakly stratified water column and a shallow nitracline reduce nitrogen limitation. To the west, in Polar Surface Water, nitrogen limitation is greater because stronger stratification inhibits nutrient resupply from deeper water and lateral nitrate supply from central Arctic waters is low. A historical hindcast simulation of ocean biogeochemistry from 1970 to 2019 corroborates these findings and highlights a strong link between nitrate supply to Atlantic Waters and the depth of winter mixing, which shoaled during the simulation in response to a local reduction in sea-ice formation. Overall, we find that while the eastern Fram Strait currently experiences seasonal nutrient replenishment and high primary production, the loss of winter sea ice and continued atmospheric warming has the potential to inhibit deep winter mixing and limit primary production in the future.

中文翻译:

两半的北极海峡:跨越弗拉姆海峡的营养吸收和限制的变化动态

持续的气候变化正在改变北冰洋的水文地理,对营养动态和初级生产产生连锁反应。弗拉姆海峡作为北极和大西洋之间的主要交换通道,其上部水体有两个不同的水团,东部有暖和咸的大西洋水域向北流动,西部有冷而新鲜的极地地表水向南流动。 . 在这里,我们使用 2016 年和 2018 年期间收集的氮同位素数据评估物理过程如何控制弗拉姆海峡的养分动态。在大西洋水域,弱分层水柱和浅层硝酸盐减少了氮限制。在西边,在极地地表水中,氮限制更大,因为更强的分层抑制了来自更深水域的养分补给,而来自北极中部水域的横向硝酸盐供应量较低。1970 年至 2019 年海洋生物地球化学的历史后报模拟证实了这些发现,并强调了大西洋水域硝酸盐供应与冬季混合深度之间的密切联系,冬季混合深度在模拟过程中因局部海冰形成减少而形成浅滩。总体而言,我们发现,虽然弗拉姆海峡东部目前正经历季节性养分补充和初级生产,但冬季海冰的消失和持续的大气变暖有可能抑制冬季深度混合并限制未来初级生产。1970 年至 2019 年海洋生物地球化学的历史后报模拟证实了这些发现,并强调了大西洋水域硝酸盐供应与冬季混合深度之间的密切联系,冬季混合深度在模拟过程中因局部海冰形成减少而形成浅滩。总体而言,我们发现,虽然弗拉姆海峡东部目前正经历季节性养分补充和初级生产,但冬季海冰的消失和持续的大气变暖有可能抑制冬季深度混合并限制未来初级生产。1970 年至 2019 年海洋生物地球化学的历史后报模拟证实了这些发现,并强调了大西洋水域硝酸盐供应与冬季混合深度之间的密切联系,冬季混合深度在模拟过程中因局部海冰形成减少而形成浅滩。总体而言,我们发现,虽然弗拉姆海峡东部目前正经历季节性养分补充和初级生产,但冬季海冰的消失和持续的大气变暖有可能抑制冬季深度混合并限制未来初级生产。
更新日期:2021-09-04
down
wechat
bug