当前位置: X-MOL 学术Phys. Earth Planet. Inter. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inferring material properties of the lower mantle minerals using Mixture Density Networks
Physics of the Earth and Planetary Interiors ( IF 2.3 ) Pub Date : 2021-08-09 , DOI: 10.1016/j.pepi.2021.106784
Ashim Rijal 1 , Laura Cobden 1 , Jeannot Trampert 1 , Jennifer M. Jackson 2 , Andrew Valentine 3
Affiliation  

Interpretation of information available from seismic data in terms of temperature and composition requires an understanding of the physical properties of minerals, in particular, the elastic properties of candidate Earth minerals at the relevant (here, lower mantle) pressure and temperature. A common practice for the bulk elastic properties is to measure volume at a range of pressures and temperatures using experiments or computational methods. These datasets are then typically fit to a pre-determined functional form, or equation of state to allow computation of elastic properties at any other pressure or temperature. However, errors, both random and systematic, limitations in the number of data and choice of pressure marker and scale, as well as different functional forms of equations of state, all contribute to the uncertainties in mineral seismic properties. In an attempt to present a more comprehensive view of these uncertainties, we use neural-network based techniques to infer the relationship among: pressure, temperature, volume, bulk modulus, and thermal expansivity of MgO. We illustrate our approach on experimental data, but an extension to ab initio data is straightforward. The type of neural network used is called a Mixture Density Network (MDN) which is a combination of a conventional feed-forward neural network and a mixture model that consists of Gaussian functions. MDNs are capable of approximating arbitrary probability density functions, which allows us to compute the uncertainties in the predicted equations of state. Since the networks interpolate locally between input samples, pressure-volume-temperature relations are implicitly learned from data without imposing any explicit thermodynamic assumptions or ad-hoc relationships. We use the partial derivatives of the mapping between inputs (pressure and temperature) and output (volume) to compute the isothermal bulk modulus and thermal expansivity. Flexibility of the MDNs allows us to investigate the uncertainty due to certain data in one region of pressure-temperature space without influencing the posterior probability density everywhere. In general, we find that the elastic properties of MgO are well-constrained by experimental data. However, our study highlights regions in which sparse or inconsistent data lead to poorly constrained elastic properties, namely: at low pressure and high temperature (<25 GPa and >1500 K), and temperatures above 2700 K. While the former conditions are likely not important for the Earth's lower mantle, they are relevant in other planetary bodies such as the Moon and Mars. Comparison with conventional equation of state forms shows that assuming a certain functional form of the pressure-volume-temperature relationship leads to potential bias in uncertainty quantification, because the uncertainties are then specific to the underlying form. In combination with data sets of other lower mantle minerals, this technique should improve uncertainty quantification in interpretations of seismic data.



中文翻译:

使用混合密度网络推断下地幔矿物的材料特性

从地震数据中获得的温度和成分信息的解释需要了解矿物的物理特性,特别是候选地球矿物在相关(此处为下地幔)压力和温度下的弹性特性。体弹性特性的常见做法是使用实​​验或计算方法在一定范围的压力和温度下测量体积。然后,这些数据集通常适合预先确定的函数形式或状态方程,以允许计算任何其他压力或温度下的弹性特性。然而,随机的和系统的误差、数据数量的限制以及压力标记和尺度的选择,以及状态方程的不同函数形式,所有这些都会导致矿物地震特性的不确定性。为了更全面地了解这些不确定性,我们使用基于神经网络的技术来推断 MgO 的压力、温度、体积、体积模量和热膨胀率之间的关系。我们用实验数据说明了我们的方法,但对 ab initio 数据的扩展很简单。使用的神经网络类型称为混合密度网络 (MDN),它是传统前馈神经网络和由高斯函数组成的混合模型的组合。MDN 能够逼近任意概率密度函数,这使我们能够计算预测状态方程中的不确定性。由于网络在输入样本之间进行局部插值,压力-体积-温度关系是从数据中隐式学习的,无需强加任何明确的热力学假设或临时关系。我们使用输入(压力和温度)和输出(体积)之间映射的偏导数来计算等温体积模量和热膨胀率。MDN 的灵活性使我们能够在不影响任何地方的后验概率密度的情况下,研究由于压力-温度空间的一个区域中的某些数据引起的不确定性。一般而言,我们发现 MgO 的弹性性能受到实验数据的良好约束。然而,我们的研究强调了稀疏或不一致数据导致弹性约束较差的区域,即:在低压和高温下(<25 我们使用输入(压力和温度)和输出(体积)之间映射的偏导数来计算等温体积模量和热膨胀率。MDN 的灵活性使我们能够在不影响任何地方的后验概率密度的情况下,研究由于压力-温度空间的一个区域中的某些数据引起的不确定性。一般而言,我们发现 MgO 的弹性性能受到实验数据的良好约束。然而,我们的研究强调了稀疏或不一致数据导致弹性约束较差的区域,即:在低压和高温下(<25 我们使用输入(压力和温度)和输出(体积)之间映射的偏导数来计算等温体积模量和热膨胀率。MDN 的灵活性使我们能够在不影响任何地方的后验概率密度的情况下,研究由于压力-温度空间的一个区域中的某些数据引起的不确定性。一般而言,我们发现 MgO 的弹性性能受到实验数据的良好约束。然而,我们的研究强调了稀疏或不一致数据导致弹性约束较差的区域,即:在低压和高温下(<25 MDN 的灵活性使我们能够在不影响任何地方的后验概率密度的情况下,研究由于压力-温度空间的一个区域中的某些数据引起的不确定性。一般而言,我们发现 MgO 的弹性性能受到实验数据的良好约束。然而,我们的研究强调了稀疏或不一致数据导致弹性约束较差的区域,即:在低压和高温下(<25 MDN 的灵活性使我们能够在不影响任何地方的后验概率密度的情况下,研究由于压力-温度空间的一个区域中的某些数据引起的不确定性。一般而言,我们发现 MgO 的弹性性能受到实验数据的良好约束。然而,我们的研究强调了稀疏或不一致数据导致弹性约束较差的区域,即:在低压和高温下(<25 GPa 和 >1500  K),以及高于 2700  K 的温度。虽然前者的条件对地球的下地幔可能并不重要,但它们与其他行星体(如月球和火星)相关。与常规状态方程的比较表明,假设压力-体积-温度关系的某种函数形式会导致不确定性量化的潜在偏差,因为不确定性是特定于潜在形式的。与其他下地幔矿物的数据集相结合,该技术应该可以改善地震数据解释中的不确定性量化。

更新日期:2021-08-20
down
wechat
bug