当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Fourier transform for nanoscale quantum sensing
npj Quantum Information ( IF 7.6 ) Pub Date : 2021-08-09 , DOI: 10.1038/s41534-021-00463-6
Vadim Vorobyov 1 , Sebastian Zaiser 1 , Nikolas Abt 1 , Jonas Meinel 1, 2 , Durga Dasari 1, 2 , Philipp Neumann 1 , Jörg Wrachtrup 1, 2
Affiliation  

The quantum Fourier transformation (QFT) is a key building block for a whole wealth of quantum algorithms. Despite its proven efficiency, only a few proof-of-principle demonstrations have been reported. Here we utilize QFT to enhance the performance of a quantum sensor. We implement the QFT algorithm in a hybrid quantum register consisting of a nitrogen-vacancy (NV) center electron spin and three nuclear spins. The QFT runs on the nuclear spins and serves to process the sensor—i.e., the NV electron spin signal. Specifically, we show the application of QFT for correlation spectroscopy, where the long correlation time benefits the use of the QFT in gaining maximum precision and dynamic range at the same time. We further point out the ability for demultiplexing the nuclear magnetic resonance (NMR) signals using QFT and demonstrate precision scaling with the number of used qubits. Our results mark the application of a complex quantum algorithm in sensing which is of particular interest for high dynamic range quantum sensing and nanoscale NMR spectroscopy experiments.



中文翻译:

用于纳米级量子传感的量子傅立叶变换

量子傅里叶变换 (QFT) 是大量量子算法的关键构建块。尽管已证明其效率高,但仅报告了少数原理验证演示。在这里,我们利用 QFT 来增强量子传感器的性能。我们在由氮空位 (NV) 中心电子自旋和三个核自旋组成的混合量子寄存器中实现 QFT 算法。QFT 在核自旋上运行并用于处理传感器——即 NV 电子自旋信号。具体来说,我们展示了 QFT 在相关光谱学中的应用,其中较长的相关时间有利于 QFT 的使用,同时获得最大精度和动态范围。我们进一步指出了使用 QFT 对核磁共振 (NMR) 信号进行多路分解的能力,并展示了使用量子位数量的精确缩放。我们的结果标志着复杂量子算法在传感中的应用,这对高动态范围量子传感和纳米级 NMR 光谱实验特别感兴趣。

更新日期:2021-08-09
down
wechat
bug