当前位置: X-MOL 学术Cryst. Growth Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational Screening of Chiral Organic Semiconductors: Exploring Side-Group Functionalization and Assembly to Optimize Charge Transport
Crystal Growth & Design ( IF 3.8 ) Pub Date : 2021-08-08 , DOI: 10.1021/acs.cgd.1c00473
Julia A. Schmidt 1 , Joseph A. Weatherby 2 , Isaac J. Sugden 3 , Alejandro Santana-Bonilla 1 , Francesco Salerno 1, 4 , Matthew J. Fuchter 1, 4 , Erin R. Johnson 2 , Jenny Nelson 4, 5 , Kim E. Jelfs 1, 4
Affiliation  

Molecular materials are challenging to design as their packing arrangements, and hence their properties, are subject to subtle variations in the interplay of soft intermolecular interactions. Rational design of new molecular materials with tailored properties is currently hampered by the difficulty in predicting how a candidate molecule will pack in space and how to control the particular polymorph obtained experimentally. Here, we develop a rapid screening approach to aid the material design process, which is then applied to predict the charge-transfer properties of 1344 helicene compounds that have potential as organic electronic materials. Our approach bridges the gap between single-molecule design, molecular assembly, and the resulting charge-carrier mobilities. We find that fluorination significantly improves electron transport in the molecular material by over 200%, while side groups containing triple bonds largely lead to improved transfer integrals. We validate our screening approach through the use of full crystal structure prediction for the most promising compounds to confirm the presence of favorable packing motifs that maximize charge mobility.

中文翻译:

手性有机半导体的计算筛选:探索侧基官能化和组装以优化电荷传输

分子材料的设计具有挑战性,因为它们的堆积排列,因此它们的性质受软分子间相互作用相互作用的微妙变化的影响。具有定制特性的新分子材料的合理设计目前受到难以预测候选分子如何在空间中堆积以及如何控制通过实验获得的特定多晶型物的困难。在这里,我们开发了一种快速筛选方法来辅助材料设计过程,然后将其用于预测 1344 种具有作为有机电子材料潜力的螺旋烯化合物的电荷转移特性。我们的方法弥合了单分子设计、分子组装和由此产生的电荷载流子迁移率之间的差距。我们发现氟化显着提高了分子材料中的电子传输超过 200%,而含有三键的侧基在很大程度上提高了转移积分。我们通过对最有希望的化合物使用全晶体结构预测来验证我们的筛选方法,以确认存在可最大化电荷迁移率的有利堆积基序。
更新日期:2021-09-01
down
wechat
bug