当前位置: X-MOL 学术Mod. Phys. Lett. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Energy-induced resonance synchronization in neural circuits
Modern Physics Letters B ( IF 1.9 ) Pub Date : 2021-08-03 , DOI: 10.1142/s0217984921504339
Pengfei Huang 1 , Yeye Guo 1 , Guodong Ren 1 , Jun Ma 1, 2
Affiliation  

Biological neurons can be approached by using some functional neural circuits, and the biophysical mechanism for signal processing can be explained. Chemical stimulus can adjust the intracellular and extracellular ions concentration, and thus the channel current can be regulated to trigger appropriate firing modes in the neural activities. A physical stimulus often injects kinds of energy, and the energy can be encoded in the components for generating a certain channel current. The energy driving on the cell can be effective to enhance the pumping of ions and mode transition is induced. Based on a simple neural circuit exposed to the external magnetic field, the mode selection is investigated to explore the biophysical mechanism of energy absorption by applying periodic, and stochastic magnetic fields, respectively. The external field energy is encoded in the induction coil of the neural circuit, and the channel current is induced. Two identical neural circuits are exposed to the same magnetic field and the synchronization approach is investigated without synapse coupling. It is found that two neurons in periodic firings can be synchronized under the same periodic or noise-like magnetic field even applying different initials, while intermittent phase lock is induced between two chaotic neurons. Stochastic variation in the external magnetic field can induce noisy induced electromotive force (IEF) and the firing mode is regulated effectively. When both noisy IEF and periodic stimulus are applied, synchronization stability between periodic neurons with initials diversity is enhanced while synchronization approach between chaotic neurons becomes difficult. In addition, the Hamilton energy in each neuron can keep pace with another neuron when complete synchronization is stabilized within a finite transient period. These results provide new insights to know the energy encoding mechanism in neural circuits and neurons exposed to external magnetic field.

中文翻译:

神经回路中的能量诱导共振同步

通过使用一些功能性神经回路可以接近生物神经元,并且可以解释信号处理的生物物理机制。化学刺激可以调节细胞内外离子浓度,从而调节通道电流以触发神经活动中的适当放电模式。物理刺激通常会注入各种能量,并且可以将能量编码在组件中以产生一定的通道电流。电池上的能量驱动可以有效地增强离子的泵浦并诱导模式转变。基于暴露于外部磁场的简单神经回路,研究模式选择以分别通过施加周期性磁场和随机磁场来探索能量吸收的生物物理机制。外场能量编码在神经回路的感应线圈中,感应出通道电流。两个相同的神经回路暴露在相同的磁场中,并且在没有突触耦合的情况下研究了同步方法。研究发现,即使施加不同的初始值,周期性放电的两个神经元也可以在相同的周期性或类似噪声的磁场下同步,而在两个混沌神经元之间诱导间歇性锁相。外部磁场的随机变化会产生噪声感应电动势(IEF),并有效调节点火模式。当同时应用有噪声的 IEF 和周期性刺激时,具有初始多样性的周期性神经元之间的同步稳定性得到增强,而混沌神经元之间的同步方法变得困难。此外,当完全同步在有限的瞬态周期内稳定时,每个神经元中的汉密尔顿能量可以与另一个神经元保持同步。这些结果为了解暴露于外部磁场的神经回路和神经元中的能量编码机制提供了新的见解。
更新日期:2021-08-03
down
wechat
bug