当前位置: X-MOL 学术Phys. fluids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular droplets vs bubbles: Effect of curvature on surface tension and Tolman length
Physics of Fluids ( IF 4.6 ) Pub Date : 2021-07-20 , DOI: 10.1063/5.0057401
Jun Wen 1, 2 , Daniele Dini 2 , Haibao Hu 1 , Edward R. Smith 3
Affiliation  

Droplets and bubbles are thought to be two sides of the same coin; this work determines how true this is at the molecular scale. Stable cylindrical nanodroplets and nanobubbles are obtained in Molecular Dynamics (MD) simulations with three-phase contact lines pinned by alternate hydrophobic and hydrophilic patterns. The surface tension and Tolman length for both types of curved interfaces are obtained with the Kirkwood–Buff method, based on the difference between normal and tangential pressure components. Both bubble and droplet cases are compared to the flat interface case for reference. Results show that the surface tension decreases linearly while the Tolman length increases linearly with the gas/liquid density ratio. By running a careful parameter study of the flat interface over a range of densities, the effect of the density ratio can be corrected isolating the effects of curvature on the surface tension and Tolman length. It is found that such effects start to be seen when the equimolar curvature radius goes down to 20 reduced Lennard–Jones (LJ) units. They have the same magnitude but act with opposite signs for nanodroplet and nanobubble interfaces. Considering effects of the density ratio and curvature, a fitted Tolman equation was obtained, which predicts the surface tension of a curved interface. Results obtained by the fitted Tolman equation agree well with those obtained by the MD simulations except at very small curvature radius (<10 reduced LJ units) due to the accumulation of the curvature dependence of the Tolman length.

中文翻译:

分子液滴与气泡:曲率对表面张力和托尔曼长度的影响

水滴和气泡被认为是同一枚硬币的两个面;这项工作确定了这在分子尺度上的真实性。在分子动力学 (MD) 模拟中获得稳定的圆柱形纳米液滴和纳米气泡,其中三相接触线由交替的疏水和亲水图案固定。基于法向和切向压力分量之间的差异,使用 Kirkwood-Buff 方法获得两种类型弯曲界面的表面张力和托尔曼长度。气泡和液滴情况均与平面接口情况进行比较以供参考。结果表明,表面张力随着气液密度比的增加呈线性下降,而托尔曼长度呈线性上升。通过在一定密度范围内对平面界面进行仔细的参数研究,可以校正密度比的影响,隔离曲率对表面张力和托尔曼长度的影响。发现当等摩尔曲率半径降低到 20 减少的 Lennard-Jones (LJ) 单位时,这种效果开始显现。它们具有相同的量级,但对于纳米液滴和纳米气泡界面以相反的符号起作用。考虑到密度比和曲率的影响,得到了一个拟合的托尔曼方程,它预测了弯曲界面的表面张力。拟合的托尔曼方程获得的结果与 MD 模拟得到的结果非常吻合,除了在非常小的曲率半径(<10 个减少的 LJ 单位)时,由于托尔曼长度的曲率依赖性的累积。发现当等摩尔曲率半径下降到 20 减少的 Lennard-Jones (LJ) 单位时,这种效果开始显现。它们具有相同的量级,但对于纳米液滴和纳米气泡界面以相反的符号起作用。考虑到密度比和曲率的影响,得到了一个拟合的托尔曼方程,它预测了弯曲界面的表面张力。拟合的托尔曼方程获得的结果与 MD 模拟得到的结果非常吻合,除了在非常小的曲率半径(<10 个减少的 LJ 单位)时,由于托尔曼长度的曲率依赖性的累积。发现当等摩尔曲率半径下降到 20 减少的 Lennard-Jones (LJ) 单位时,这种效果开始显现。它们具有相同的量级,但对于纳米液滴和纳米气泡界面以相反的符号起作用。考虑到密度比和曲率的影响,得到了一个拟合的托尔曼方程,它预测了弯曲界面的表面张力。拟合的托尔曼方程获得的结果与 MD 模拟得到的结果非常吻合,除了在非常小的曲率半径(<10 个减少的 LJ 单位)时,由于托尔曼长度的曲率依赖性的累积。考虑到密度比和曲率的影响,得到了一个拟合的托尔曼方程,它预测了弯曲界面的表面张力。拟合的托尔曼方程获得的结果与 MD 模拟得到的结果非常吻合,除了在非常小的曲率半径(<10 个减少的 LJ 单位)时,由于托尔曼长度的曲率依赖性的累积。考虑到密度比和曲率的影响,得到了一个拟合的托尔曼方程,它预测了弯曲界面的表面张力。拟合的托尔曼方程获得的结果与 MD 模拟得到的结果非常吻合,除了在非常小的曲率半径(<10 个减少的 LJ 单位)时,由于托尔曼长度的曲率依赖性的累积。
更新日期:2021-07-30
down
wechat
bug