当前位置: X-MOL 学术SIAM J. Sci. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Structure-Exploiting Nested Lanczos-Type Iteration for the Multiview Canonical Correlation Analysis
SIAM Journal on Scientific Computing ( IF 3.1 ) Pub Date : 2021-07-29 , DOI: 10.1137/20m1353691
Lei-Hong Zhang , Xijun Ma , Chungen Shen

SIAM Journal on Scientific Computing, Volume 43, Issue 4, Page A2685-A2713, January 2021.
Data points from many recent real applications usually have a multiview structure in the sense that they are drawn from a multivariate random variable $\mathtt{v}\in \mathbb{R}^n$ that can be partitioned into multiple, say, $m$, subvariables (i.e., multiview) $\mathtt{v}_i\in \mathbb{R}^{n_i}$ for $i=1,\ldots,m$ and $\sum_{i=1}^mn_i=n$. The multiview canonical correlation analysis is a statistical approach which fuses each subvariable $\mathtt{v}_i$ into a reduced one $s_i={x}_i^{T}\mathtt{v}_i$ through a linear combination ${x}_i$ so that the fused $m$ random variables achieve the maximum of a certain type of correlation. Among many criteria that measure the correlation, one of the earliest rules is to maximize the sum of all pairwise correlations subject to the ellipsoidal constraint of each ${x}_i$. The model is commonly referred to as the maximal correlation problem (MCP), and the associated KKT system is called the multivariate eigenvalue problem (MEP). Existing methods for MCP and/or MEP may encounter slow convergence or be inapplicable in applications with high-dimensional features. This paper proposes a Krylov subspace-type method by exploiting the special structure of the ellipsoidal constraint of ${x}_i$. Both the global convergence and the local convergence rate are studied, and numerical verification of the efficiency is carried out on both synthetic examples and applications of the unsupervised feature fusion with real data.


中文翻译:

用于多视图典型相关分析的结构利用嵌套 Lanczos 型迭代

SIAM 科学计算杂志,第 43 卷,第 4 期,第 A2685-A2713 页,2021 年 1 月。
来自许多最近的实际应用程序的数据点通常具有多视图结构,因为它们是从多元随机变量 $\mathtt{v}\in \mathbb{R}^n$ 中提取的,该变量可以划分为多个,例如 $ m$,子变量(即多视图) $\mathtt{v}_i\in \mathbb{R}^{n_i}$ 用于 $i=1,\ldots,m$ 和 $\sum_{i=1}^mn_i =n$。多视图典型相关分析是一种统计方法,它通过线性组合 ${x 将每个子变量 $\mathtt{v}_i$ 融合为一个减少的 $s_i={x}_i^{T}\mathtt{v}_i$ }_i$ 使得融合的 $m$ 随机变量达到某种类型相关性的最大值。在衡量相关性的众多标准中,最早的规则之一是在每个 ${x}_i$ 的椭球约束下最大化所有成对相关性的总和。该模型通常称为最大相关问题(MCP),相关的 KKT 系统称为多元特征值问题(MEP)。现有的 MCP 和/或 MEP 方法可能会遇到收敛缓慢或不适用于具有高维特征的应用程序。本文利用${x}_i$椭球约束的特殊结构,提出了一种Krylov子空间型方法。研究了全局收敛和局部收敛速率,并对无监督特征与真实数据融合的合成实例和应用进行了效率的数值验证。现有的 MCP 和/或 MEP 方法可能会遇到收敛缓慢或不适用于具有高维特征的应用程序。本文利用${x}_i$椭球约束的特殊结构,提出了一种Krylov子空间型方法。研究了全局收敛和局部收敛速率,并对无监督特征与真实数据融合的合成实例和应用进行了效率的数值验证。现有的 MCP 和/或 MEP 方法可能会遇到收敛缓慢或不适用于具有高维特征的应用程序。本文利用${x}_i$椭球约束的特殊结构,提出了一种Krylov子空间型方法。研究了全局收敛和局部收敛速率,并对无监督特征与真实数据融合的合成实例和应用进行了效率的数值验证。
更新日期:2021-07-30
down
wechat
bug