当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photon Upconversion for Photovoltaics and Photocatalysis: A Critical Review
Chemical Reviews ( IF 62.1 ) Pub Date : 2021-07-30 , DOI: 10.1021/acs.chemrev.1c00034
Bryce S Richards 1, 2 , Damien Hudry 1 , Dmitry Busko 1 , Andrey Turshatov 1 , Ian A Howard 1, 2
Affiliation  

Opportunities for enhancing solar energy harvesting using photon upconversion are reviewed. The increasing prominence of bifacial solar cells is an enabling factor for the implementation of upconversion, however, when the realistic constraints of current best-performing silicon devices are considered, many challenges remain before silicon photovoltaics operating under nonconcentrated sunlight can be enhanced via lanthanide-based upconversion. A photophysical model reveals that >1–2 orders of magnitude increase in the intermediate state lifetime, energy transfer rate, or generation rate would be needed before such solar upconversion could start to become efficient. Methods to increase the generation rate such as the use of cosensitizers to expand the absorption range and the use of plasmonics or photonic structures are reviewed. The opportunities and challenges for these approaches (or combinations thereof) to achieve efficient solar upconversion are discussed. The opportunity for enhancing the performance of technologies such as luminescent solar concentrators by combining upconversion together with micro-optics is also reviewed. Triplet–triplet annihilation-based upconversion is progressing steadily toward being relevant to lower-bandgap solar cells. Looking toward photocatalysis, photophysical modeling indicates that current blue-to-ultraviolet lanthanide upconversion systems are very inefficient. However, hope remains in this direction for organic upconversion enhancing the performance of visible-light-active photocatalysts.

中文翻译:

光伏和光催化的光子上转换:批判性评论

回顾了使用光子上转换增强太阳能收集的机会。双面太阳能电池的日益突出是实施上转换的一个有利因素,然而,当考虑到当前性能最佳的硅器件的现实限制时,在通过镧系元素增强在非集中阳光下运行的硅光伏电池之前仍然存在许多挑战上转换。光物理模型表明,在这种太阳能上转换开始变得有效之前,中间态寿命、能量转移率或发电率需要增加 >1-2 个数量级。回顾了提高生成速率的方法,例如使用共敏剂来扩大吸收范围以及使用等离子激元或光子结构。讨论了这些方法(或其组合)实现高效太阳能上转换的机遇和挑战。还回顾了通过将上转换与微光学相结合来提高发光太阳能聚光器等技术性能的机会。基于三重态-三重态湮没的上转换正朝着与低带隙太阳能电池相关的方向稳步发展。展望光催化,光物理模型表明目前的蓝色到紫外线镧系元素上转换系统效率非常低。然而,有机上转换提高可见光活性光催化剂性能的希望仍然存在。还回顾了通过将上转换与微光学相结合来提高发光太阳能聚光器等技术性能的机会。基于三重态-三重态湮没的上转换正朝着与低带隙太阳能电池相关的方向稳步发展。展望光催化,光物理模型表明目前的蓝色到紫外线镧系元素上转换系统效率非常低。然而,有机上转换提高可见光活性光催化剂性能的希望仍然存在。还回顾了通过将上转换与微光学相结合来提高发光太阳能聚光器等技术性能的机会。基于三重态-三重态湮没的上转换正朝着与低带隙太阳能电池相关的方向稳步发展。展望光催化,光物理模型表明目前的蓝色到紫外线镧系元素上转换系统效率非常低。然而,有机上转换提高可见光活性光催化剂性能的希望仍然存在。展望光催化,光物理模型表明目前的蓝色到紫外线镧系元素上转换系统效率非常低。然而,有机上转换提高可见光活性光催化剂性能的希望仍然存在。展望光催化,光物理模型表明目前的蓝色到紫外线镧系元素上转换系统效率非常低。然而,有机上转换提高可见光活性光催化剂性能的希望仍然存在。
更新日期:2021-08-11
down
wechat
bug