当前位置: X-MOL 学术Int. J. Damage Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Failure mechanism of Ω-shape 3D orthogonal woven composite component under transverse low-velocity impact and subsequent axial compression load
International Journal of Damage Mechanics ( IF 4.2 ) Pub Date : 2021-07-29 , DOI: 10.1177/10567895211036502
Zhongxiang Pan 1, 2, 3 , Mingling Wang 3 , Zhiping Ying 3 , Xiaoying Cheng 3 , Zhenyu Wu 3
Affiliation  

Failure mechanism of complex profile component is always different from that of conventional plate counterpart due to the coupling effect of material and structure. In this work, the low-velocity impact (LVI) and compression after impact (CAI) behaviors of Ω-shape hybrid carbon/Kevlar 3 D orthogonal woven (3DOW) composite made for vehicle B-pillar were comprehensively studied by mechanical tests and mesoscale finite element (FE) analysis at component level, high-speed infrared (IR) thermal imaging, acoustic emission (AE) detection, and microscopic damage morphology characterization. It is found that a through-thickness stress concentration ring leads to high stress state and damage zone penetrating from the impact side to non-impact side along the ring path instead of at the lowest impactor position. The slope effect can not only help the stress conduction downward, but also inhibit the damage propagation from the impact side to the slope. Impact-induced cracks are concentrated around the R corners and extended along the axial direction of the specimen, forming the strip-shaped damage concentration zone along the upper eave of the slope. The Progressive Top-Down Crushing (PTDC) mode of compression after impact is due to the complex deformation process of each yarn such as squeezing, folding and eversion in the crushing process from the top of specimen. And the Middle Indentation Fracture (MIF) mode is the result of bending instability and abrupt fracture. This work presents a reference significance for the further development of composite strengthening components in vehicle bodywork.



中文翻译:

Ω形3D正交编织复合材料横向低速冲击及后续轴向压缩载荷失效机理

由于材料和结构的耦合作用,复杂型材构件的失效机理总是不同于传统的板件。在这项工作中,通过力学测试和中尺度综合研究了用于车辆 B 柱的 Ω 形混合碳/凯夫拉尔 3D 正交编织 (3DOW) 复合材料的低速冲击 (LVI) 和冲击后压缩 (CAI) 行为。组件级有限元 (FE) 分析、高速红外 (IR) 热成像、声发射 (AE) 检测和微观损伤形态表征。发现全厚度应力集中环导致高应力状态和损伤区域沿环路径从冲击侧穿透到非冲击侧,而不是在最低冲击器位置。斜坡效应不仅可以帮助应力向下传导,而且可以抑制损伤从冲击侧向斜坡的传播。冲击诱导裂纹集中在R角附近,并沿试件轴向延伸,沿斜坡上檐形成条状损伤集中区。冲击后压缩的渐进式自上而下破碎 (PTDC) 模式是由于每根纱线在破碎过程中从试样顶部进行挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。同时也抑制了损伤从冲击侧向斜坡的传播。冲击诱导裂纹集中在R角附近,并沿试件轴向延伸,沿斜坡上檐形成条状损伤集中区。冲击后压缩的渐进式自上而下破碎 (PTDC) 模式是由于每根纱线在破碎过程中从试样顶部进行挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。同时也抑制了损伤从冲击侧向斜坡的传播。冲击诱导裂纹集中在R角附近,并沿试件轴向延伸,沿斜坡上檐形成条状损伤集中区。冲击后压缩的渐进式自上而下破碎 (PTDC) 模式是由于每根纱线在破碎过程中从试样顶部进行挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。冲击诱导裂纹集中在R角附近,并沿试件轴向延伸,沿斜坡上檐形成条状损伤集中区。冲击后的渐进式自上而下挤压 (PTDC) 压缩模式是由于每根纱线在挤压过程中从试样顶部开始的挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。冲击诱导裂纹集中在R角附近,并沿试件轴向延伸,沿斜坡上檐形成条状损伤集中区。冲击后压缩的渐进式自上而下破碎 (PTDC) 模式是由于每根纱线在破碎过程中从试样顶部进行挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。冲击后压缩的渐进式自上而下破碎 (PTDC) 模式是由于每根纱线在破碎过程中从试样顶部进行挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。冲击后的渐进式自上而下挤压 (PTDC) 压缩模式是由于每根纱线在挤压过程中从试样顶部开始的挤压、折叠和外翻等复杂的变形过程。而中间压痕断裂(MIF)模式是弯曲不稳定和突然断裂的结果。该工作对进一步发展汽车车身复合材料强化部件具有参考意义。

更新日期:2021-07-29
down
wechat
bug