当前位置: X-MOL 学术Exp. Neurol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Embedded adaptive deep brain stimulation for cervical dystonia controlled by motor cortex theta oscillations
Experimental Neurology ( IF 5.3 ) Pub Date : 2021-07-28 , DOI: 10.1016/j.expneurol.2021.113825
Vinith Johnson 1 , Robert Wilt 1 , Roee Gilron 1 , Juan Anso 1 , Randy Perrone 1 , Martijn Beudel 2 , Dan Piña-Fuentes 2 , Jeremy Saal 1 , Jill L Ostrem 1 , Ian Bledsoe 1 , Philip Starr 1 , Simon Little 1
Affiliation  

Dystonia is a disabling movement disorder characterized by excessive muscle contraction for which the underlying pathophysiology is incompletely understood and treatment interventions limited in efficacy. Here we utilize a novel, sensing-enabled, deep brain stimulator device, implanted in a patient with cervical dystonia, to record local field potentials from chronically implanted electrodes in the sensorimotor cortex and subthalamic nuclei bilaterally. This rechargeable device was able to record large volumes of neural data at home, in the naturalistic environment, during unconstrained activity. We confirmed the presence of theta (3–7 Hz) oscillatory activity, which was coherent throughout the cortico-subthalamic circuit and specifically suppressed by high-frequency stimulation. Stimulation also reduced the duration, rate and height of theta bursts. These findings motivated a proof-of-principle trial of a new form of adaptive deep brain stimulation - triggered by theta-burst activity recorded from the motor cortex. This facilitated increased peak stimulation amplitudes without induction of dyskinesias and demonstrated improved blinded clinical ratings compared to continuous DBS, despite reduced total electrical energy delivered. These results further strengthen the pathophysiological role of low frequency (theta) oscillations in dystonia and demonstrate the potential for novel adaptive stimulation strategies linked to cortico-basal theta bursts.



中文翻译:

由运动皮层θ振荡控制的颈椎肌张力障碍的嵌入式自适应深部脑刺激

肌张力障碍是一种以肌肉过度收缩为特征的致残性运动障碍,其潜在的病理生理学尚不完全清楚,治疗干预的效果有限。在这里,我们利用一种新型的、启用传感的、深部脑刺激器装置,植入一名颈肌张力障碍患者,记录两侧感觉运动皮层和丘脑底核中长期植入电极的局部场电位。这种可充电设备能够在家中、自然环境中、在不受限制的活动中记录大量神经数据。我们证实了θ(3-7 Hz)振荡活动的存在,它在整个皮质-下丘脑回路中是一致的,并且被高频刺激特别抑制。刺激也减少了持续时间,θ 爆发的速率和高度。这些发现激发了对一种新形式的适应性深部脑刺激的原理验证试验——由运动皮层记录的 theta 爆发活动触发。这促进了峰值刺激幅度的增加,而不会引起运动障碍,并且与连续 DBS 相比,尽管减少了总电能输送,但仍显示出改善的盲临床评级。这些结果进一步加强了低频(θ)振荡在肌张力障碍中的病理生理作用,并证明了与皮质基底θ爆发相关的新型适应性刺激策略的潜力。这促进了峰值刺激幅度的增加,而不会引起运动障碍,并且与连续 DBS 相比,尽管减少了总电能输送,但仍显示出改善的盲临床评级。这些结果进一步加强了低频(θ)振荡在肌张力障碍中的病理生理作用,并证明了与皮质基底θ爆发相关的新型适应性刺激策略的潜力。这促进了峰值刺激幅度的增加,而不会引起运动障碍,并且与连续 DBS 相比,尽管减少了总电能输送,但仍显示出改善的盲临床评级。这些结果进一步加强了低频(θ)振荡在肌张力障碍中的病理生理作用,并证明了与皮质基底θ爆发相关的新型适应性刺激策略的潜力。

更新日期:2021-08-10
down
wechat
bug