当前位置: X-MOL 学术Adv. Powder Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical study of flow field in new design cyclones with different wall temperature profiles: Comparison with conventional ones
Advanced Powder Technology ( IF 5.2 ) Pub Date : 2021-07-28 , DOI: 10.1016/j.apt.2021.07.017
Hamed Safikhani 1 , Mohammad Rafiee 1, 2 , Dariush Ashtiani 1
Affiliation  

In this paper, numerical study of flow field in the new design cyclones with five different wall temperature profiles are investigated. The new design cyclone is based on the idea of improving cyclone collection efficiency and pressure drop by increasing the vortex length. In this paper, the five wall temperature profiles are as follows: (A) cooling with uniform distribution, (B) without temperature change, (C) heating with uniform distribution, (D) incremental linear heating, (E) reduction linear heating. Results are compared in new design and conventional cyclones. The Reynolds averaged Navier–Stokes equations with Reynolds stress turbulence model (RSM) are solved. The Eulerian-Lagrangian computational procedure is used to predict particles tracking in the cyclones. The velocity fluctuations are simulated using the Discrete Random Walk (DRW).

Results show that generally, heating the bottom zone of the cyclones can improve the collection efficiency and reduce the pressure drop while heating the top zone of the cyclones marginally affects the flow field. Moreover, cooling the cyclones reduces the efficiency and causes a higher pressure drop. Among five different wall temperature profiles, C and E profiles can increase the efficiency about 8% and profile C reduces the pressure drop by about 9%. The mentioned values in different conditions including particle diameter, flow rate, etc. can be different.



中文翻译:

不同壁温剖面的新型旋流器流场数值研究:与常规旋流器的比较

在本文中,研究了具有五种不同壁温分布的新设计旋流器中流场的数值研究。新设计的旋流器基于通过增加涡流长度来提高旋流器收集效率和压降的想法。本文中,五种壁温分布如下:( A )均匀分布冷却,( B )无温度变化,( C )均匀分布加热,( D )增量线性加热,( E)) 还原线性加热。结果在新设计和传统旋风分离器中进行了比较。使用雷诺应力湍流模型 (RSM) 求解雷诺平均 Navier-Stokes 方程。欧拉-拉格朗日计算程序用于预测气旋中的粒子跟踪。使用离散随机游走 (DRW) 模拟速度波动。

结果表明,一般来说,加热旋风器底部区域可以提高收集效率并减少压降,而加热旋风器顶部区域对流场影响很小。此外,冷却旋风分离器会降低效率并导致更高的压降。在五种不同的壁温曲线中,C型E型可提高约8%的效率,C型可降低约9%的压降。在包括粒径、流速等不同条件下的提及值可能不同。

更新日期:2021-08-27
down
wechat
bug