当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Silicon Carbide Nanoparticles-Based Nanofibrous Membrane in Comparison With Thin-Film Enzymatic Glucose Sensor
IEEE Transactions on NanoBioscience ( IF 3.9 ) Pub Date : 2021-07-26 , DOI: 10.1109/tnb.2021.3100466
Kavyashree Puttananjegowda , Arash Takshi , Sylvia Thomas

This work presents, silicon carbide nanoparticles (SiCNPs) embedded in a conductive polymer (CP) to be electrospun to fabricate a nanofibrous membrane and a thin-film. Electrochemical enzymatic glucose sensing mechanism of an electrospun nanofibrous membrane (ENFM) of SiCNPs in a CP compared to a spin-coated-thin-film (SCTF) of SiCNPs in a CP. Fiber alignment in the form of a matrix is a key factor that determines the physical properties of nanofiber membrane compared to thin-film. It is found that glucose sensing electrodes formed by a SiCNPs-ENFM has enhanced binding of the glucose oxidase (GO x ) enzyme within the fibrous membrane as compared to a SiCNPs-SCTF. The SiCNPs-ENFM and SiCNPs-SCTF glucose sensing electrodes were characterized for morphology by using scanning electron microscopy (SEM) and for electrochemical activity by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) methods. SiCNPs-ENFM based glucose electrodes shown a detection range from a 0.5 mM to 20 mM concentration with a better sensitivity of $387.57~\mu \text{A}$ /gmMcm 2 , and low limit of detection (LOD) 552.89 nM compared to SiCNPs-SCTF with sensitivity of $6.477~\mu \text{A}$ /gmMcm 2 and LOD of $60.87~\mu \text{M}$ . The change in current level with SiCNPs-ENFM was ~14% contrast to ~75% with the SiCNPs-SCTF based glucose sensor over 50 days. The electrochemical analysis results demonstrated that the SiCNPs-ENFM electrode provides enhanced sensitivity, better limit of detection (LOD), and durability compared to SiCNPs-SCTF based glucose sensing electrode.

中文翻译:

基于碳化硅纳米颗粒的纳米纤维膜与薄膜酶促葡萄糖传感器的比较

这项工作提出了嵌入导电聚合物 (CP) 中的碳化硅纳米粒子 (SiCNP) 进行静电纺丝以制造纳米纤维膜和薄膜。与 CP 中 SiCNP 的旋涂薄膜 (SCTF) 相比,CP 中 SiCNP 的电纺纳米纤维膜 (ENFM) 的电化学酶促葡萄糖传感机制。与薄膜相比,矩阵形式的纤维排列是决定纳米纤维膜物理特性的关键因素。发现由 SiCNPs-ENFM 形成的葡萄糖传感电极具有增强的葡萄糖氧化酶 (GO x ) 与 SiCNPs-SCTF 相比,纤维膜内的酶。通过使用扫描电子显微镜 (SEM) 和使用循环伏安法 (CV)、电化学阻抗谱 (EIS) 和计时电流法 (CA) 方法对 SiCNPs-ENFM 和 SiCNPs-SCTF 葡萄糖传感电极的形态进行表征。基于 SiCNPs-ENFM 的葡萄糖电极显示了从 0.5 mM 到 20 mM 浓度的检测范围,具有更好的灵敏度 $387.57~\mu\text{A}$ /gmMcm 2 ,与 SiCNPs-SCTF 相比,检测下限 (LOD) 为 552.89 nM,灵敏度为 $6.477~\mu\text{A}$ /gmMcm 2和 LOD $60.87~\mu \text{M}$ . 在 50 天内,SiCNPs-ENFM 的电流水平变化约为 14%,而基于 SiCNPs-SCTF 的葡萄糖传感器的电流水平变化约为 75%。电化学分析结果表明,与基于 SiCNPs-SCTF 的葡萄糖传感电极相比,SiCNPs-ENFM 电极具有更高的灵敏度、更好的检测限 (LOD) 和耐用性。
更新日期:2021-10-01
down
wechat
bug