当前位置: X-MOL 学术EMBO J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration
The EMBO Journal ( IF 11.4 ) Pub Date : 2021-07-26 , DOI: 10.15252/embj.2021108498
Satish Bodakuntla 1, 2 , Xidi Yuan 3 , Mariya Genova 1, 2 , Sudarshan Gadadhar 1, 2 , Sophie Leboucher 1, 2 , Marie-Christine Birling 4 , Dennis Klein 3 , Rudolf Martini 3 , Carsten Janke 1, 2 , Maria M Magiera 1, 2
Affiliation  

Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The “tubulin code” hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies β-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.

中文翻译:

α-和β-微管蛋白多谷氨酰化在控制轴突运输和神经退行性变中的不同作用

微管蛋白多谷氨酰化是微管细胞骨架的翻译后修饰,由多种具有不同特异性的酶产生。“微管蛋白密码”假设预测特定酶产生的修饰选择性地控制微管功能。我们最近发现神经元中多聚谷氨酰化的过度积累会导致它们的退化并扰乱轴突运输,这为检验这一假设提供了机会。通过开发新的小鼠模型和新的谷氨酰化特异性抗体,我们在此证明谷氨酰化酶 TTLL1 和 TTLL7 在神经元微管上产生独特而独特的谷氨酰化模式。我们发现在生理条件下,TTLL1 多聚谷氨酰化 α-微管蛋白,而 TTLL7 修饰 β-微管蛋白。TLL1,但不是 TLL7,催化在缺乏去谷氨酰酶 CCP1 的小鼠中发现的过度谷氨酰化。因此,在这些小鼠中,TTLL1 的缺失,而不是 TTLL7 的缺失,可以防止浦肯野细胞和周围神经中有髓轴突的退化。此外,TTLL1 的缺失导致神经元线粒体运动性增加,而 TTLL7 的缺失则没有这种影响。通过揭示由不同酶产生的微管蛋白谷氨酰化的特定模式如何转化为特定的生理和病理读数,我们证明了微管蛋白代码与体内平衡的相关性。丢失TTLL1会导致神经元中线粒体运动增加,而丢失TTLL7则没有这种影响。通过揭示由不同酶产生的微管蛋白谷氨酰化的特定模式如何转化为特定的生理和病理读数,我们证明了微管蛋白代码与体内平衡的相关性。丢失TTLL1会导致神经元中线粒体运动增加,而丢失TTLL7则没有这种影响。通过揭示由不同酶产生的微管蛋白谷氨酰化的特定模式如何转化为特定的生理和病理读数,我们证明了微管蛋白代码与体内平衡的相关性。
更新日期:2021-09-01
down
wechat
bug