当前位置: X-MOL 学术J. Sign. Process. Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Exploring Domain-Specific Architectures for Energy-Efficient Wearable Computing
Journal of Signal Processing Systems ( IF 1.8 ) Pub Date : 2021-07-24 , DOI: 10.1007/s11265-021-01682-y
Dhruv Gajaria 1 , Tosiron Adegbija 1
Affiliation  

This paper explores the use of domain-specific architectures for energy-efficient and flexible computing of a variety of workloads, including signal processing applications, in wearable devices. As wearable devices become more popular, and with growing consumer demands, these devices are expected to run a wide range of increasingly complex workloads. A general-purpose solution for wearable computing (e.g., microcontrollers and microprocessors) affords high flexibility, wherein a wide range of applications can be run, but offers mediocre performance and may result in high energy and area overheads. On the other end of the computing flexibility spectrum, application-specific integrated circuits (or accelerators) may optimize a specific algorithm, resulting in inflexible computing and under-utilization of computing resources. Domain-specific architectures (DSAs) provide a happy medium of computing flexibility. DSAs focus on doing a few things—i.e., satisfying the computing requirements of a set of domain workloads with execution similarities—extremely well. As such, DSAs maximize resource usage and achieve substantial performance and energy benefits for a variety of applications. In this work, we first analyze wearable workloads to identify their execution patterns, data movement characteristics, execution bottlenecks, and similarities. Thereafter, we explore various DSA design schemes to meet the increasing processing requirements of wearable workloads, within the typically stringent design constraints of wearable devices. We analyze the performance, energy, and area tradeoffs of the different DSA design schemes in comparison to multiple state-of-the-art architectures, and show, through experimental results, that DSAs offer much promise for flexible, low-overhead, and energy-efficient wearable computing.



中文翻译:

探索用于节能可穿戴计算的特定领域架构

本文探讨了如何使用特定领域的体系结构对可穿戴设备中的各种工作负载(包括信号处理应用程序)进行节能和灵活的计算。随着可穿戴设备变得越来越流行,并且随着消费者需求的增长,这些设备有望运行各种日益复杂的工作负载。用于可穿戴计算的通用解决方案(例如,微控制器和微处理器)提供了高度的灵活性,其中可以运行范围广泛的应用程序,但性能平庸,并可能导致高能量和面积开销。在计算灵活性范围的另一端,专用集成电路(或加速器)可能会优化特定算法,导致计算不灵活和计算资源利用不足。特定领域架构 (DSA) 提供了一种令人满意的计算灵活性媒介。DSA 专注于做一些事情——即满足一组具有执行相似性的域工作负载的计算要求——非常好. 因此,DSA 可以最大限度地利用资源,并为各种应用实现可观的性能和能源优势。在这项工作中,我们首先分析可穿戴工作负载,以确定它们的执行模式、数据移动特征、执行瓶颈和相似性。此后,我们探索了各种 DSA 设计方案,以满足可穿戴工作负载不断增长的处理要求,同时满足可穿戴设备通常严格的设计限制。我们分析了与多种最先进架构相比不同 DSA 设计方案的性能、能量和面积权衡,并通过实验结果表明 DSA 为灵活、低开销和能量提供了很大希望- 高效的可穿戴计算。

更新日期:2021-07-25
down
wechat
bug