当前位置: X-MOL 学术Int. J. Automot. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Integration of Active Tilting Control and Full-Wheel Steering Control System on Vehicle Lateral Performance
International Journal of Automotive Technology ( IF 1.6 ) Pub Date : 2021-07-24 , DOI: 10.1007/s12239-021-0088-1
Wu Liang 1 , Ejaz Ahmac 2 , Muhammad Arshad Khan 2 , Iljoong Youn 2
Affiliation  

This research presents an integration of two control systems, an active tilting controller and a full-wheel steering controller. This integration improves vehicle lateral performances by enhancing road-holding capability, lateral stability, and safety simultaneously. The active tilting controller utilizes an active mass shift to evenly distribute the vertical load at each suspension, and boost road-holding capability. On the other hand, the full-wheel steering controller adjusts rear steering angles to use lateral force at each ground-tyre contact point and amplify the vehicle’s ability to follow the desired yaw rate and global sideslip angle during cornering maneuvers. Considering the improved road-holding capability and the coupling effect of body attitude motion and yaw motion, the two controllers in combination produce a synergistic effect on ride comfort, maneuverability and safety, and improve overall lateral performance. A 7-degree-of-freedom (DOF) linear full car model is used in designing the active tilting controller, while a 2-DOF bicycle model considering the attitude motion of the car body is used in designing a full-wheel steering controller. A 14-DOF complex nonlinear full car model that can truly reflect 6-DOF car body motion is applied to verify the performance of the proposed collaborative system. The simulation results show that the system represents a better lateral stability and steering response in intense driving while ensuring the better heading directivity of the vehicle.



中文翻译:

主动倾斜控制与全轮转向控制系统集成对车辆横向性能的影响

这项研究提出了两个控制系统的集成,一个主动倾斜控制器和一个全轮转向控制器。这种集成通过同时增强道路保持能力、横向稳定性和安全性来提高车辆的横向性能。主动倾斜控制器利用主动质量转移来均匀分配每个悬架的垂直负载,并提高道路保持能力。另一方面,全轮转向控制器调整后转向角以在每个地面轮胎接触点使用横向力,并在转弯操作期间放大车辆遵循所需偏航率和全局侧滑角的能力。考虑到抓地能力的提高以及车身姿态运动和偏航运动的耦合效应,两种控制器的组合对乘坐舒适性、操纵性和安全性产生协同效应,并提高整体横向性能。主动倾斜控制器设计采用7自由度(DOF)线性整车模型,全轮转向控制器采用考虑车身姿态运动的2自由度自行车模型。一个可以真实反映6-DOF车身运动的14-DOF复杂非线性整车模型被用来验证所提出的协同系统的性能。仿真结果表明,该系统在保证车辆更好的航向方向性的同时,在激烈驾驶中表现出更好的横向稳定性和转向响应。主动倾斜控制器设计采用7自由度(DOF)线性整车模型,全轮转向控制器采用考虑车身姿态运动的2自由度自行车模型。一个可以真实反映6-DOF车身运动的14-DOF复杂非线性整车模型被用来验证所提出的协同系统的性能。仿真结果表明,该系统在保证车辆更好的航向方向性的同时,在激烈驾驶中表现出更好的横向稳定性和转向响应。主动倾斜控制器设计采用7自由度(DOF)线性整车模型,全轮转向控制器采用考虑车身姿态运动的2自由度自行车模型。一个可以真实反映6-DOF车身运动的14-DOF复杂非线性整车模型被用来验证所提出的协同系统的性能。仿真结果表明,该系统在保证车辆更好的航向方向性的同时,在激烈驾驶中表现出更好的横向稳定性和转向响应。一个可以真实反映6-DOF车身运动的14-DOF复杂非线性整车模型被用来验证所提出的协同系统的性能。仿真结果表明,该系统在保证车辆更好的航向方向性的同时,在激烈驾驶中表现出更好的横向稳定性和转向响应。一个可以真实反映6-DOF车身运动的14-DOF复杂非线性整车模型被用来验证所提出的协同系统的性能。仿真结果表明,该系统在保证车辆更好的航向方向性的同时,在激烈驾驶中表现出更好的横向稳定性和转向响应。

更新日期:2021-07-24
down
wechat
bug