当前位置: X-MOL 学术Soils Found. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Comparison of liquefaction behavior of granular material under SH- and Love-wave strain conditions by 3D DEM
Soils and Foundations ( IF 3.7 ) Pub Date : 2021-07-24 , DOI: 10.1016/j.sandf.2021.06.013
Mingjin Jiang 1 , Akiyoshi Kamura 1 , Motoki Kazama 1
Affiliation  

In the study of liquefaction behavior associated with seismic loading conditions, it is often assumed that liquefaction occurs owing to the upward propagation of shear waves, despite evidence that liquefaction damage may result from or be aggravated by horizontally propagating surface waves. In this study, a series of numerical tests, based on the three-dimensional discrete element method, is performed to examine the liquefaction behavior of granular materials under Love-wave strain conditions. The response of granular packings under horizontally polarized shear- (SH-) and Love-wave strain conditions is discussed at both macro- and microscales. The simulation results indicate that, at the macroscale, the effective stress reduction ratio increases more rapidly under Love-wave strain conditions than under SH-wave strain conditions. Based on the concept of energy, the granular materials under Love-wave strain conditions can be considered more vulnerable to liquefaction than those under SH-wave strain conditions. Microscale analysis indicates the spatial rotation of the dominant direction of backbone force-chains under Love-wave strain conditions. In addition, focus here is placed on the coordination number, which represents the average contact number per particle. The difference in the degradation speed of the skeleton structure of the granular packings between the SH- and Love-wave strain conditions may not appear until the coordination number has decreased to a critical value of around 4. After the coordination number has approached approximately 3, the granular packings become unstable and soon liquefy. The minimum mean effective stress is discussed herein.



中文翻译:

通过 3D DEM 比较 SH 和 Love 波应变条件下颗粒材料的液化行为

在与地震载荷条件相关的液化行为研究中,通常假设液化是由于剪切波的向上传播而发生的,尽管有证据表明液化损坏可能由水平传播的表面波引起或加剧。在这项研究中,进行了一系列基于三维离散元方法的数值试验,以检查粒状材料在洛夫波应变条件下的液化行为。在宏观和微观尺度上讨论了颗粒填料在水平极化剪切 (SH-) 和洛夫波应变条件下的响应。模拟结果表明,在宏观尺度上,Love 波应变条件下的有效应力降低率比 SH 波应变条件下增加得更快。基于能量的概念,Love波应变条件下的粒状材料比SH波应变条件下的粒状材料更容易液化。微观分析表明在洛夫波应变条件下主干力链的主导方向的空间旋转。此外,这里的重点是配位数,它表示每个粒子的平均接触数。SH-和Love-波应变条件下颗粒填料骨架结构降解速度的差异可能不会出现,直到配位数下降到4左右的临界值。在配位数接近3后,颗粒填料变得不稳定并很快液化。本文讨论了最小平均有效应力。Love 波应变条件下的颗粒材料比 SH 波应变条件下的颗粒材料更容易液化。微观分析表明在洛夫波应变条件下主干力链的主导方向的空间旋转。此外,这里的重点是配位数,它表示每个粒子的平均接触数。SH-和Love-波应变条件下颗粒填料骨架结构降解速度的差异可能不会出现,直到配位数下降到4左右的临界值。在配位数接近3后,颗粒填料变得不稳定并很快液化。本文讨论了最小平均有效应力。Love 波应变条件下的颗粒材料比 SH 波应变条件下的颗粒材料更容易液化。微观分析表明在洛夫波应变条件下主干力链的主导方向的空间旋转。此外,这里的重点是配位数,它表示每个粒子的平均接触数。SH-和Love-波应变条件下颗粒填料骨架结构降解速度的差异可能不会出现,直到配位数下降到4左右的临界值。在配位数接近3后,颗粒填料变得不稳定并很快液化。本文讨论了最小平均有效应力。

更新日期:2021-09-30
down
wechat
bug