当前位置: X-MOL 学术Nucl. Eng. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow and heat transfer analysis of lead–bismuth eutectic flowing in a tube under rolling conditions
Nuclear Engineering and Design ( IF 1.7 ) Pub Date : 2021-07-23 , DOI: 10.1016/j.nucengdes.2021.111373
Zhipeng Liu 1 , Daishun Huang 2 , Chenglong Wang 1 , Qifan Yu 1 , Dalin Zhang 1 , Wenxi Tian 1 , Suizheng Qiu 1 , G.H. Su 1
Affiliation  

The investigation of flow and heat transfer of lead–bismuth eutectic (LBE) under rolling conditions is vital to the application of LBE cooled reactor in offshore engineering. In this paper, mature numerical method for modelling low Prandtl number liquid metal is used for LBE flow in a vertical tube under rolling conditions. Reynolds stress turbulent model is chosen to consider the complex secondary flow caused by additional force. It is found that the transverse additional force is the main reason accounting for the enhancement of heat transfer and secondary flow. The transient maximum heat transfer ability can be enlarged by 18% under condition of rolling angle of 30° and period of 8 s. And 10 times transverse additional force caused by rolling angle of 30° and period of 8 s is enough to change the flow resistance characteristic of LBE. Comparisons with water coolant indicate that the intensity of radial secondary flow play an important role in determining the heat transfer characteristic of fluid under rolling conditions. The high density and low Prandtl number also make the features of LBE under rolling conditions different from those of water. The empirical correlations used in system code now could not predict the flow and heat transfer of LBE under rolling conditions. Special attention should be paid to safety design criteria of the off-shore LBE cooled reactor. This paper may contribute to the thermal–hydraulic design of off-shore liquid metal cooled reactors.



中文翻译:

轧制条件下管内铅铋共晶流动的流动与传热分析

轧制条件下铅铋共晶 (LBE) 流动和传热的研究对于 LBE 冷却反应堆在海洋工程中的应用至关重要。本文采用成熟的数值方法模拟低普朗特数液态金属,用于轧制条件下垂直管中的 LBE 流动。选择雷诺应力湍流模型来考虑由附加力引起的复杂二次流。结果表明,横向附加力是导致传热和二次流动增强的主要原因。在滚动角为30°、周期为8 s的条件下,瞬态最大传热能力可提高18%。30°滚动角和8s周期产生的10倍横向附加力足以改变LBE的流阻特性。与水冷却剂的比较表明径向二次流的强度在确定轧制条件下流体的传热特性方面起着重要作用。高密度和低普朗特数也使 LBE 在轧制条件下的特性与水不同。系统代码中使用的经验相关性现在无法预测 LBE 在轧制条件下的流动和传热。应特别注意海上 LBE 冷却堆的安全设计标准。本文可能有助于海上液态金属冷却反应堆的热工水力设计。高密度和低普朗特数也使 LBE 在轧制条件下的特性与水不同。系统代码中使用的经验相关性现在无法预测轧制条件下 LBE 的流动和传热。应特别注意海上 LBE 冷却堆的安全设计标准。本文可能有助于海上液态金属冷却反应堆的热工水力设计。高密度和低普朗特数也使 LBE 在轧制条件下的特性与水不同。系统代码中使用的经验相关性现在无法预测轧制条件下 LBE 的流动和传热。应特别注意海上 LBE 冷却堆的安全设计标准。本文可能有助于海上液态金属冷却反应堆的热工水力设计。

更新日期:2021-07-23
down
wechat
bug