当前位置: X-MOL 学术arXiv.cs.SY › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Tethered Quadrotor UAV$-$Buoy System for Marine Locomotion
arXiv - CS - Systems and Control Pub Date : 2021-07-22 , DOI: arxiv-2107.10690
Ahmad Kourani, Naseem Daher

Unmanned aerial vehicles (UAVs) are finding their way into offshore applications. In this work, we postulate an original system that entails a marine locomotive quadrotor UAV that manipulates the velocity of a floating buoy by means of a cable. By leveraging the advantages of UAVs relative to high speed, maneuverability, ease of deployment, and wide field of vision, the proposed UAV$-$buoy system paves the way in front of a variety of novel applications. The dynamic model that couples the buoy, UAV, cable, and water environment is presented using the Euler-Lagrange method. A stable control system design is proposed to manipulate the forward-surge speed of the buoy under two constraints: maintaining the cable in a taut state, and keeping the buoy in contact with the water surface. Polar coordinates are used in the controller design process to attain correlated effects on the tracking performance, whereby each control channel independently affects one control parameter. This results in improved performance over traditional Cartesian-based velocity controllers, as demonstrated via numerical simulations in wave-free and wavy seas.

中文翻译:

用于海洋运动的系留四旋翼无人机$-$浮标系统

无人驾驶飞行器 (UAV) 正在寻找进入海上应用的途径。在这项工作中,我们假设了一个原始系统,该系统需要一个海洋机车四旋翼无人机,它通过电缆操纵浮动浮标的速度。通过利用无人机在高速、机动性、易于部署和视野广阔等方面的优势,提议的无人机$-$浮标系统为各种新颖的应用铺平了道路。使用 Euler-Lagrange 方法呈现了耦合浮标、无人机、电缆和水环境的动力学模型。提出了一种稳定的控制系统设计,以在两个约束条件下操纵浮标的前冲速度:保持电缆处于拉紧状态,并保持浮标与水面接触。在控制器设计过程中使用极坐标来获得对跟踪性能的相关影响,由此每个控制通道独立地影响一个控制参数。与传统的基于笛卡尔的速度控制器相比,这提高了性能,如无波浪和波浪海中的数值模拟所证明的那样。
更新日期:2021-07-23
down
wechat
bug