当前位置: X-MOL 学术Proc. Inst. Mech. Eng. C J. Mec. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The influence of ultrasonic vibration amplitude and magnetic field intensity on microstructural characteristics in laser drilling of Ti6Al4V
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ( IF 2 ) Pub Date : 2021-07-22 , DOI: 10.1177/09544062211027606
Omid Rohani Raftar 1 , Soheil Amiri 1 , Mohsen Khajehzadeh 1 , Mohammad Reza Razfar 1
Affiliation  

Nowadays, laser drilling has found extensive medical applications such as drilling of titanium implants. However, laser drilling of such implants has encountered several restrictions such as low penetration depth, high thickness of recast layer and heat affected zone (HAZ). Therefore, various approaches such as magnetic field and/or ultrasonic vibration aided laser drilling have been proposed to overcome these limitations; among them, few studies have been conducted considering the simultaneous effect of magnetic field and ultrasonic vibrations on microstructural characteristics. Therefore, in the present paper, the effects of magnetic field intensity and ultrasonic vibration amplitude (with a frequency of 28 kHz) have been investigated on the formed phases, thickness of recast layer and thickness of HAZ in laser drilling of Ti6Al4V. According to the obtained results, adding ultrasonic vibrations to the laser drilling process will lead to an average decrease of 29.40% and 28% respectively for the thickness of HAZ and recast layer. However, with the addition of a magnetic field (0.1 Tesla), the thicknesses of HAZ and recast layer were increased by 7% and 11%, respectively. Furthermore, increasing the ultrasonic vibration amplitude was associated with the increase in the acicular alpha phase (α′) as well as more dense, and fine-grained and uniform structure. This can be attributed to the strengthening of convective heat transfer mechanism and higher cooling rate. Additionally, by increasing the intensity of the magnetic field, the structure of the acicular alpha (α′) became finer and the density of lateral branches decreased.



中文翻译:

超声振动幅值和磁场强度对Ti6Al4V激光钻孔显微组织特性的影响

如今,激光钻孔已发现广泛的医疗应用,例如钛植入物的钻孔。然而,这种植入物的激光钻孔遇到了一些限制,例如穿透深度低、重铸层和热影响区 (HAZ) 的厚度高。因此,人们提出了各种方法,例如磁场和/或超声波振动辅助激光钻孔来克服这些限制。其中,考虑到磁场和超声波振动对微观结构特征的同时影响的研究很少。因此,本文研究了磁场强度和超声振动幅度(频率为28 kHz)对Ti6Al4V激光钻孔成形相、重铸层厚度和热影响区厚度的影响。根据得到的结果,在激光钻孔过程中加入超声波振动会使热影响区和重铸层的厚度分别平均降低29.40%和28%。然而,随着磁场(0.1 特斯拉)的加入,热影响区和重铸层的厚度分别增加了 7% 和 11%。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。在激光钻孔过程中加入超声波振动会使热影响区和重铸层的厚度分别平均减少29.40%和28%。然而,随着磁场(0.1 特斯拉)的加入,热影响区和重铸层的厚度分别增加了 7% 和 11%。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。在激光钻孔过程中加入超声波振动会使热影响区和重铸层的厚度分别平均减少29.40%和28%。然而,随着磁场(0.1 特斯拉)的加入,热影响区和重铸层的厚度分别增加了 7% 和 11%。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。热影响区和重铸层的厚度分别为 40% 和 28%。然而,随着磁场(0.1 特斯拉)的加入,热影响区和重铸层的厚度分别增加了 7% 和 11%。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。热影响区和重铸层的厚度分别为 40% 和 28%。然而,随着磁场(0.1 特斯拉)的加入,热影响区和重铸层的厚度分别增加了 7% 和 11%。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。此外,增加超声振动幅度与针状α相(α')的增加以及更致密、细粒和均匀的结构有关。这可以归因于对流传热机制的加强和更高的冷却速度。此外,通过增加磁场强度,针状α(α')的结构变得更细,侧枝的密度降低。

更新日期:2021-07-22
down
wechat
bug