当前位置: X-MOL 学术arXiv.cs.SC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations
arXiv - CS - Symbolic Computation Pub Date : 2021-07-19 , DOI: arxiv-2107.09443
Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas

Physics-informed neural networks (PINNs) are an increasingly powerful way to solve partial differential equations, generate digital twins, and create neural surrogates of physical models. In this manuscript we detail the inner workings of NeuralPDE.jl and show how a formulation structured around numerical quadrature gives rise to new loss functions which allow for adaptivity towards bounded error tolerances. We describe the various ways one can use the tool, detailing mathematical techniques like using extended loss functions for parameter estimation and operator discovery, to help potential users adopt these PINN-based techniques into their workflow. We showcase how NeuralPDE uses a purely symbolic formulation so that all of the underlying training code is generated from an abstract formulation, and show how to make use of GPUs and solve systems of PDEs. Afterwards we give a detailed performance analysis which showcases the trade-off between training techniques on a large set of PDEs. We end by focusing on a complex multiphysics example, the Doyle-Fuller-Newman (DFN) Model, and showcase how this PDE can be formulated and solved with NeuralPDE. Together this manuscript is meant to be a detailed and approachable technical report to help potential users of the technique quickly get a sense of the real-world performance trade-offs and use cases of the PINN techniques.

中文翻译:

NeuralPDE:使用误差近似自动化物理信息神经网络 (PINN)

物理信息神经网络 (PINN) 是求解偏微分方程、生成数字孪生和创建物理模型的神经替代品的一种越来越强大的方法。在这份手稿中,我们详细介绍了 NeuralPDE.jl 的内部工作原理,并展示了围绕数值求积构建的公式如何产生新的损失函数,从而实现对有界误差容限的适应性。我们描述了使用该工具的各种方式,详细介绍了数学技术,例如使用扩展损失函数进行参数估计和运算符发现,以帮助潜在用户将这些基于 PINN 的技术应用到他们的工作流程中。我们展示了 NeuralPDE 如何使用纯符号公式,以便所有底层训练代码都从抽象公式生成,并展示如何利用 GPU 和求解 PDE 系统。之后,我们给出了详细的性能分析,展示了在大量 PDE 上训练技术之间的权衡。最后,我们将重点关注复杂的多物理场示例 Doyle-Fuller-Newman (DFN) 模型,并展示如何使用 NeuralPDE 来制定和求解该 PDE。这份手稿旨在成为一份详细且平易近人的技术报告,以帮助该技术的潜在用户快速了解 PINN 技术的实际性能权衡和用例。并展示如何使用 NeuralPDE 制定和求解此 PDE。这份手稿旨在成为一份详细且平易近人的技术报告,以帮助该技术的潜在用户快速了解 PINN 技术的实际性能权衡和用例。并展示如何使用 NeuralPDE 制定和求解此 PDE。这份手稿旨在成为一份详细且平易近人的技术报告,以帮助该技术的潜在用户快速了解 PINN 技术的实际性能权衡和用例。
更新日期:2021-07-21
down
wechat
bug