当前位置: X-MOL 学术Surf. Interface Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monte Carlo simulations of pure tungsten and advanced “smart” tungsten alloys under helium bombardment for future fusion power plants
Surface and Interface Analysis ( IF 1.7 ) Pub Date : 2021-07-21 , DOI: 10.1002/sia.6990
Zahira Laaziz 1 , Asmae Guennoun 1 , Imad Fechtal 1 , Rachida Moultif 1 , Latifa Salama 1 , Aouatif Dezairi 1
Affiliation  

Self-passivating tungsten-based alloys may provide a major safety advantage in comparison with pure tungsten, which is presently the main candidate material for the plasma-facing protection of future fusion power reactors. Advanced “smart” tungsten-based alloys adjust their properties to the environment: during the plasma operation, preferential sputtering will form almost pure tungsten surface facing the plasma. In case of an accident, the remaining alloying elements form a protective layer, preventing tungsten mobilization. The major challenge in such a scenario is to suppress the sublimation which is responsible for a release of radioactivity. Subsequent oxidation confirmed superior oxidation resistance that is to say resistance to sputtering of advanced “smart” tungsten-based alloys compared with pure tungsten (W). In this work, we study an alloy containing tungsten (W), chromium (Cr), silicon (Si), titanium (Ti), and yttrium (Y). We have applied the Monte Carlo SRIM-2013 simulation program to calculate the sputtering yields, number of vacancies, and backscattering yields of the first wall of pure tungsten (W) and advances “smart” tungsten-based alloys (W-Cr, W-Si, W-Cr-Si, W-Cr-Ti, and W-Cr-Y) by helium ion bombardment. It is found that the sputtering yields of advanced “smart” tungsten alloys are very low than that of pure (W) at each incident energy and incidence angle. On the other hand, the sputtering yield depends on the properties of both the incident particle and the target.

中文翻译:

用于未来聚变发电厂的纯钨和先进“智能”钨合金在氦轰击下的蒙特卡罗模拟

与纯钨相比,自钝化钨基合金可提供主要的安全优势,纯钨目前是未来聚变动力反应堆面向等离子体保护的主要候选材料。先进的“智能”钨基合金可根据环境调整其特性:在等离子体操作期间,优先溅射将形成面向等离子体的几乎纯钨表面。万一发生事故,剩余的合金元素会形成保护层,防止钨移动。在这种情况下的主要挑战是抑制导致放射性释放的升华。随后的氧化证实了优越的抗氧化性,也就是说,与纯钨 (W) 相比,先进的“智能”钨基合金的抗溅射性。在这项工作中,我们研究了一种含有钨 (W)、铬 (Cr)、硅 (Si)、钛 (Ti) 和钇 (Y) 的合金。我们已应用 Monte Carlo SRIM-2013 模拟程序来计算纯钨 (W) 第一壁的溅射产率、空位数量和背向散射产率,并提出了“智能”钨基合金(W-Cr、W- Si、W-Cr-Si、W-Cr-Ti 和 W-Cr-Y) 通过氦离子轰击。发现先进的“智能”钨合金的溅射产率在每个入射能量和入射角都比纯 (W) 合金低。另一方面,溅射产额取决于入射粒子和靶材的特性。纯钨 (W) 第一壁的空位数量和背向散射产率,并推进“智能”钨基合金(W-Cr、W-Si、W-Cr-Si、W-Cr-Ti 和 W- Cr-Y) 通过氦离子轰击。发现先进的“智能”钨合金的溅射产率在每个入射能量和入射角都比纯 (W) 合金低。另一方面,溅射产额取决于入射粒子和靶材的特性。纯钨 (W) 第一壁的空位数量和背向散射产率,并推进“智能”钨基合金(W-Cr、W-Si、W-Cr-Si、W-Cr-Ti 和 W- Cr-Y) 通过氦离子轰击。发现先进的“智能”钨合金的溅射产率在每个入射能量和入射角都比纯 (W) 合金低。另一方面,溅射产额取决于入射粒子和靶材的特性。
更新日期:2021-09-01
down
wechat
bug