当前位置: X-MOL 学术Nature › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extreme flow simulations reveal skeletal adaptations of deep-sea sponges
Nature ( IF 64.8 ) Pub Date : 2021-07-21 , DOI: 10.1038/s41586-021-03658-1
Giacomo Falcucci 1, 2 , Giorgio Amati 3 , Pierluigi Fanelli 4 , Vesselin K Krastev 1 , Giovanni Polverino 5 , Maurizio Porfiri 6, 7, 8 , Sauro Succi 2, 9, 10
Affiliation  

Since its discovery1,2, the deep-sea glass sponge Euplectella aspergillum has attracted interest in its mechanical properties and beauty. Its skeletal system is composed of amorphous hydrated silica and is arranged in a highly regular and hierarchical cylindrical lattice that begets exceptional flexibility and resilience to damage3,4,5,6. Structural analyses dominate the literature, but hydrodynamic fields that surround and penetrate the sponge have remained largely unexplored. Here we address an unanswered question: whether, besides improving its mechanical properties, the skeletal motifs of E. aspergillum underlie the optimization of the flow physics within and beyond its body cavity. We use extreme flow simulations based on the ‘lattice Boltzmann’ method7, featuring over fifty billion grid points and spanning four spatial decades. These in silico experiments reproduce the hydrodynamic conditions on the deep-sea floor where E. aspergillum lives8,9,10. Our results indicate that the skeletal motifs reduce the overall hydrodynamic stress and support coherent internal recirculation patterns at low flow velocity. These patterns are arguably beneficial to the organism for selective filter feeding and sexual reproduction11,12. The present study reveals mechanisms of extraordinary adaptation to live in the abyss, paving the way towards further studies of this type at the intersection between fluid mechanics, organism biology and functional ecology.



中文翻译:

极端流动模拟揭示了深海海绵的骨骼适应性

自发现1,2以来,深海玻璃海绵Euplectella aspergillum因其机械性能和美丽而引起了人们的兴趣。它的骨架系统由无定形水合二氧化硅组成,排列成高度规则和层次分明的圆柱形晶格,具有出色的柔韧性和抗损伤能力3,4,5,6。结构分析在文献中占主导地位,但围绕并穿透海绵的流体动力学场在很大程度上仍未被探索。在这里,我们解决了一个悬而未决的问题:除了改善其机械性能外,曲霉菌的骨骼基序是否是优化其体腔内外的流动物理特性的基础。我们使用基于“格子玻尔兹曼”方法7的极端流动模拟,具有超过 500 亿个网格点,跨越四个空间十年。这些计算机实验再现了曲霉生活在深海海底的水动力条件8,9,10。我们的结果表明,骨架图案降低了整体流体动力应力并支持低流速下的连贯内部再循环模式。这些模式可以说有利于有机体进行选择性滤食和有性繁殖11,12. 本研究揭示了生活在深渊中的非凡适应机制,为在流体力学、生物生物学和功能生态学之间的交叉点上进一步研究这种类型铺平了道路。

更新日期:2021-07-21
down
wechat
bug