当前位置: X-MOL 学术ChemPlusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrigendum: Synthesis of 1,2-Dicarbonyl-3-enes by Hydroacylation of 1-Alkynes with Glyoxal Derivatives Using Metal–Organic Framework Cu/MOF-74 as Heterogeneous Catalyst
ChemPlusChem ( IF 3.4 ) Pub Date : 2021-06-21 , DOI: 10.1002/cplu.202100262
Nguyen B. Nguyen , Giao H. Dang , Dung T. Le , Thanh Truong , Nam T. S. Phan

The authors regret that in the original Full Paper, some characterization and images of the catalyst Cu/MOF-74 from previous reports were incorrectly shown in the main text and in the Supporting Information. The material was therefore resynthesized following the reported procedure and characterized anew. The original Figure 13 should be replaced by Figure 1 below.

image
Figure 1
Open in figure viewerPowerPoint

FT-IR spectra of (a) fresh and (b) reused Cu/MOF-74 catalyst.

The characterization of the new materials was carried out by using different instruments, and thus the first paragraph of the Materials and Instrumentation subsection should be updated as follows: All reagents and starting materials were obtained commercially from Sigma-Aldrich and Merck and were used as received without any further purification unless otherwise noted. Nitrogen physisorption measurements were conducted using a Micromeritics 2020 volumetric adsorption analyzer system. Samples were pretreated by heating under vacuum at 150 °C for 3 h. A TGA/DSC 3+, Mettler Toledo was used for thermogravimetric analysis (TGA) with a heating rate of 10 °C/min under a nitrogen atmosphere. X-ray powder diffraction (XRD) patterns were recorded using a Cu Kα radiation source on a D8 Advance Bruker powder diffractometer. Scanning electron microscopy studies were conducted on a S4800-Hitachi Scanning Electron Microscope (SEM). Transmission electron microscopy studies were performed using a JEOL JEM 1010 Transmission Electron Microscope (TEM) at 80 kV. The Cu-MOF-74 sample was dispersed on holey carbon grids for TEM observation. Elemental analysis with atomic absorption spectrophotometry (AAS) was performed on an AA-6800 Shimadzu. Fourier transform infrared (FT-IR) spectra were obtained on an InfraRed Bruker Tensor 37 instrument, with samples being dispersed on potassium bromide pallets.

Figures S2–S7 have been updated in a revised Supporting Information file. The authors sincerely apologize for any inconvenience caused and state that this does not change the scientific conclusions of their Full Paper.



中文翻译:

更正:使用金属-有机骨架 Cu/MOF-74 作为多相催化剂,通过 1-炔烃与乙二醛衍生物的氢酰化合成 1,2-二羰基-3-烯

作者遗憾的是,在原始全文中,之前报告中催化剂 Cu/MOF-74 的一些表征和图像在正文和支持信息中显示不正确。因此,按照报告的程序重新合成材料并重新表征。原始图 13 应替换为下面的图 1。

图像
图1
在图形查看器中打开微软幻灯片软件

(a) 新鲜和 (b) 重复使用的 Cu/MOF-74 催化剂的 FT-IR 光谱。

新材料的表征是通过使用不同的仪器进行的,因此材料和仪器小节的第一段应更新如下:所有试剂和起始材料均从 Sigma-Aldrich 和默克商业获得,并按原样使用除非另有说明,否则无需进一步纯化。使用 Micromeritics 2020 体积吸附分析仪系统进行氮物理吸附测量。通过在真空下在 150°C 下加热 3 小时对样品进行预处理。使用 Mettler Toledo 的 TGA/DSC 3+,在氮气氛下以 10 °C/min 的加热速率进行热重分析 (TGA)。在 D8 Advance Bruker 粉末衍射仪上使用 Cu Kα 辐射源记录 X 射线粉末衍射 (XRD) 图案。扫描电子显微镜研究在 S4800-Hitachi 扫描电子显微镜 (SEM) 上进行。使用 JEOL JEM 1010 透射电子显微镜 (TEM) 在 80 kV 下进行透射电子显微镜研究。将 Cu-MOF-74 样品分散在多孔碳网格上用于 TEM 观察。在 AA-6800 Shimadzu 上使用原子吸收分光光度法 (AAS) 进行元素分析。傅里叶变换红外 (FT-IR) 光谱在 InfraRed Bruker Tensor 37 仪器上获得,样品分散在溴化钾托盘上。在 AA-6800 Shimadzu 上使用原子吸收分光光度法 (AAS) 进行元素分析。傅里叶变换红外 (FT-IR) 光谱在 InfraRed Bruker Tensor 37 仪器上获得,样品分散在溴化钾托盘上。在 AA-6800 Shimadzu 上使用原子吸收分光光度法 (AAS) 进行元素分析。傅里叶变换红外 (FT-IR) 光谱在 InfraRed Bruker Tensor 37 仪器上获得,样品分散在溴化钾托盘上。

图 S2-S7 已在修订的支持信息文件中更新。作者对造成的任何不便深表歉意,并声明这不会改变他们全文的科学结论。

更新日期:2021-07-20
down
wechat
bug