当前位置: X-MOL 学术Eur. Phys. J. E › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-propulsion in 2D confinement: phoretic and hydrodynamic interactions
The European Physical Journal E ( IF 1.8 ) Pub Date : 2021-07-20 , DOI: 10.1140/epje/s10189-021-00101-1
Akash Choudhary 1, 2 , K V S Chaithanya 1 , Sébastien Michelin 3 , S Pushpavanam 1
Affiliation  

Abstract

Chemically active Janus particles generate tangential concentration gradients along their surface for self-propulsion. Although this is well studied in unbounded domains, the analysis in biologically relevant environments such as confinement is scarce. In this work, we study the motion of a Janus sphere in weak confinement. The particle is placed at an arbitrary location, with arbitrary orientation between the two walls. Using the method of reflections, we study the effect of confining planar boundaries on the phoretic and hydrodynamic interactions, and their consequence on the Janus particle dynamics. The dynamical trajectories are analyzed using phase diagrams for different surface coverage of activity and solute-particle interactions. In addition to near wall states such as ‘sliding’ and ‘hovering’, we demonstrate that accounting for two planar boundaries reveals two new states: channel-spanning oscillations and damped oscillations around the centerline, which were characterized as ‘scattering’ or ‘reflection’ by earlier analyses on single wall interactions. Using phase-diagrams, we highlight the differences in inert-facing and active-facing Janus particles. We also compare the dynamics of Janus particles with squirmers for contrasting the chemical interactions with hydrodynamic effects. Insights from the current work suggest that biological and artificial swimmers sense their surroundings through long-ranged interactions, that can be modified by altering the surface properties.

Graphic abstract



中文翻译:

二维限制中的自推进:泳动和流体动力学相互作用

摘要

具有化学活性的 Janus 粒子沿其表面产生切向浓度梯度以进行自我推进。尽管这在无界域中得到了很好的研究,但在生物相关环境(如限制)中的分析很少。在这项工作中,我们研究了弱约束下 Janus 球体的运动。粒子被放置在任意位置,在两壁之间具有任意方向。使用反射的方法,我们研究了限制平面边界对泳动和流体动力学相互作用的影响,以及它们对 Janus 粒子动力学的影响。动态轨迹使用相图分析不同表面覆盖范围的活动和溶质-粒子相互作用。除了“滑动”和“悬停”等近壁状态外,我们证明,考虑到两个平面边界揭示了两种新状态:跨通道振荡和围绕中心线的阻尼振荡,通过早期对单壁相互作用的分析将其表征为“散射”或“反射”。使用相图,我们强调了面向惰性和面向活性的 Janus 粒子的差异。我们还比较了 Janus 粒子与蠕动者的动力学,以对比化学相互作用与流体动力学效应。当前工作的见解表明,生物和人工游泳者通过远程相互作用感知周围环境,可以通过改变表面特性来改变这种相互作用。通过早期对单壁相互作用的分析,它们被表征为“散射”或“反射”。使用相图,我们强调了面向惰性和面向活性的 Janus 粒子的差异。我们还比较了 Janus 粒子与蠕动者的动力学,以对比化学相互作用与流体动力学效应。当前工作的见解表明,生物和人工游泳者通过远程相互作用感知周围环境,可以通过改变表面特性来改变这种相互作用。通过早期对单壁相互作用的分析,它们被表征为“散射”或“反射”。使用相图,我们强调了面向惰性和面向活性的 Janus 粒子的差异。我们还比较了 Janus 粒子与蠕动者的动力学,以对比化学相互作用与流体动力学效应。当前工作的见解表明,生物和人工游泳者通过远程相互作用感知周围环境,可以通过改变表面特性来改变这种相互作用。

图形摘要

更新日期:2021-07-20
down
wechat
bug