当前位置: X-MOL 学术Environ. Geochem. Health › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of combined soil amendments on Cd accumulation, translocation and food safety in rice: a field study in southern China
Environmental Geochemistry and Health ( IF 4.2 ) Pub Date : 2021-07-19 , DOI: 10.1007/s10653-021-01033-7
Lei Shi 1, 2 , Zhaohui Guo 1 , Shuaixia Liu 2 , Xiyuan Xiao 1 , Chi Peng 1 , Wenli Feng 1 , Hongzhen Ran 1 , Peng Zeng 1
Affiliation  

Excessive Cd content and high Cd/Zn ratio in rice grains threaten human health. To study the reduction effects of combined soil amendments on Cd content and Cd/Zn ratio in rice planting in soils with different Cd contamination levels, we conducted field trials in three regions of Hunan province, China. Six field treatments were designed in each study area, including control (CK), lime alone (L), lime combined with sepiolite (LS), phosphate fertilizer (LP), organic fertilizer (LO) and phosphate fertilizer + organic fertilizer (LPO). The application of the combined amendments reduced the Cd content in rice grains to less than the Food Health Standard of China (0.2 mg/kg) and the Cd/Zn ratio to less than the safety threshold of 0.015. The average reduction rates of grain Cd content under the combined treatments among the three regions increased with the increase in Cd content in the soil. Meanwhile, the amendments also decreased the soil available Cd and Zn concentration significantly. The LO had the highest efficiency on decreasing Cd content in rice grains among these amendments, which is ranged from 44.6% to 52.8% in the three regions compared with CK. Similarly, high reduction rates of Cd/Zn ratio were found in the LO treatment, with an average value of 57.3% among the three regions. The grain Cd contents and Cd/Zn ratios were significantly correlated with the soil available Cd concentrations, plant uptake factor and the straw to rice grain translocation factor (TFgs) (P < 0.05). The results indicated that the combined soil amendments, especially lime combined with organic fertilizer, would be an effective way to control Cd content in rice.

更新日期:2021-07-20
down
wechat
bug