当前位置: X-MOL 学术IEEE Robot. Automation Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Learning of Causal Observable Functions for Koopman-DFL Lifting Linearization of Nonlinear Controlled Systems and Its Application to Excavation Automation
IEEE Robotics and Automation Letters ( IF 5.2 ) Pub Date : 2021-06-24 , DOI: 10.1109/lra.2021.3092256
Nicholas S. Selby , H. Harry Asada

Effective and causal observable functions for low-order lifting linearization of nonlinear controlled systems are learned from data by using neural networks. While Koopman operator theory allows us to represent a nonlinear system as a linear system in an infinite-dimensional space of observables, exact linearization is guaranteed only for autonomous systems with no input, and finding effective observable functions for approximation with a low-order linear system remains an open question. Dual-Faceted Linearization uses a set of effective observables for low-order lifting linearization, but the method requires knowledge of the physical structure of the nonlinear system. Here, a data-driven method is presented for generating a set of nonlinear observable functions that can accurately approximate a nonlinear control system to a low-order linear control system. A caveat in using data of measured variables as observables is that the measured variables may contain input to the system, which incurs a causality contradiction when lifting the system, i.e., taking derivatives of the observables. The current work presents a method for eliminating such anti-causal components of the observables and lifting the system using only causal observables. The method is applied to excavation automation, a complex nonlinear dynamical system, to obtain a low-order lifted linear model for control design.

中文翻译:

非线性控制系统Koopman-DFL提升线性化因果可观测函数的学习及其在挖掘自动化中的应用

通过使用神经网络从数据中学习非线性控制系统低阶提升线性化的有效和因果可观察函数。虽然 Koopman 算子理论允许我们将非线性系统表示为无限维可观测空间中的线性系统,但只有没有输入的自治系统才能保证精确的线性化,并找到有效的可观测函数来逼近低阶线性系统仍然是一个悬而未决的问题。Dual-Faceted Linearization 使用一组有效的可观测量进行低阶提升线性化,但该方法需要了解非线性系统的物理结构。这里,提出了一种数据驱动方法,用于生成一组非线性可观测函数,可以将非线性控制系统准确地逼近低阶线性控制系统。使用测量变量的数据作为可观察量的一个警告是,测量变量可能包含系统的输入,这在提升系统时会产生因果关系矛盾,即取可观察量的导数。当前的工作提出了一种消除可观察量的这种反因果成分并仅使用因果可观察量来提升系统的方法。将该方法应用于挖掘自动化这一复杂的非线性动力系统,得到低阶提升线性模型进行控制设计。这在提升系统时会导致因果关系矛盾,即取可观测量的导数。当前的工作提出了一种消除可观察量的这种反因果成分并仅使用因果可观察量来提升系统的方法。将该方法应用于挖掘自动化这一复杂的非线性动力系统,得到低阶提升线性模型进行控制设计。这在提升系统时会导致因果关系矛盾,即取可观测量的导数。当前的工作提出了一种消除可观察量的这种反因果成分并仅使用因果可观察量来提升系统的方法。将该方法应用于挖掘自动化这一复杂的非线性动力系统,得到低阶提升线性模型进行控制设计。
更新日期:2021-07-20
down
wechat
bug